with individual atoms
play

with Individual Atoms Christopher Monroe Univ. Maryland, JQI, - PowerPoint PPT Presentation

Quantum Circuits and Simulation with Individual Atoms Christopher Monroe Univ. Maryland, JQI, QuICS, and IonQ Atomic Qubit ( 171 Yb + ) | = |1,0 n HF /2 p = 12.642 812 118 GHz 2 S 1/2 | = |0,0 171 Yb + Qubit Manipulation


  1. Quantum Circuits and Simulation with Individual Atoms Christopher Monroe Univ. Maryland, JQI, QuICS, and IonQ

  2. Atomic Qubit ( 171 Yb + ) |  = |1,0  n HF /2 p = 12.642 812 118 GHz 2 S 1/2 |  = |0,0 

  3. 171 Yb + Qubit Manipulation g/2p = 20 MHz 2 P 3/2 66 THz 33 THz 2 P 1/2 355 nm (100 MHz, 10psec) |  2 S 1/2 |  n HF = 12.642 812 118 GHz D. Hayes et al., PRL 104, 140501 (2010)

  4. Quantum Circuits and Algorithms

  5. Quantum Entanglement of Trapped Ions ~5 m m r     d 𝑠 2 + 𝜀 2 − 𝑓 2 𝑓 2 𝑠 ≈ − 𝑓𝜀 2 d ~ 10 nm ∆𝐹 = dipole-dipole coupling e d ~ 500 Debye 2𝑠 3 ۧ ۧ | ↓↓ → | ↓↓ → 𝑓 −𝑗𝜒 | ۧ ۧ | ↓↑ ↓↑ = 𝑓 2 𝜀 2 𝑢 𝜒 = ∆𝐹𝑢 = 𝜌 for full → 𝑓 −𝑗𝜒 | 2ℏ𝑠 3 ℏ 2 ۧ ۧ entanglement | ↑↓ ↑↓ ۧ ۧ | ↑↑ → | ↑↑ Native Ion Trap Operation: “ Ising ” gate Cirac and Zoller (1995) T gate ~ 10 - 100 m s Mølmer & Sørensen (1999) (1) 𝜏 𝑦 (2) 𝜒 𝑌𝑌 𝜒 = 𝑓 −𝑗𝜏 𝑦 Solano, de Matos Filho, Zagury (1999) F ~ 98% – 99.9% Milburn, Schneider, James (2000)

  6. Raman Sideband Spectrum of 32 171 Yb + ions Transverse X modes Fluorescence (arb) Transverse Y modes 2.5 3.0 3.5 4.0 Raman beatnote frequency (MHz)

  7. Programmable/Reconfigurable Quantum Computer Module Full “Quantum Stack” architecture S. Debnath, et al., Nature 536 , 63 (2016)

  8. Benchmarking 11-qubit register Fidelities of all two-qubit gates 11 Trapped Ions 1.00 fully connected ത = 97.5% (includes SPAM errors) 𝐺 𝑠𝑏𝑥 (SPAM-corrected) 𝐺 𝑥𝑝𝑠𝑡𝑢 > 98% 11 0.99 = 55 gates > 99.5% (SPAM-corrected) 𝐺 𝑐𝑓𝑡𝑢 2 Entangling Gate Fidelity 0.98 0.97 2D nearest-neighbor 0.96 0.95 Qubit pair

  9. Benchmarking 11-qubit register Bernstein-Vazirani Algorithm Given 𝑔 𝒚 = 𝒅 ∙ 𝒚 , find n -bit string 𝒅 avg observed success prob: 73.0% classical: n queries best possible classical: 0.2% quantum: 1 query distribution of measurements example: 𝒅 = 𝟐𝟐𝟏𝟐𝟏𝟐𝟐𝟏𝟏𝟐 probability textbook circuit trapped ion circuit input circuit 𝒅

  10. Build it and they will come! application #qubits # 2Q gates # 1Q gates fidelity reference collaborator CNOT 2 1 3 99% Nature 536, 63 (2016) QFT Phase est. 5 10 70-75 61.9% Nature 536, 63 (2016) QFT period finding 5 10 70-75 695-97% Nature 536, 63 (2016) Deutsch-Jozsa 5 1-4 13-34 93%-97% Nature 536, 63 (2016) 0-4 10-38 Bernstein-Vazirani 5 90% Nature 536, 63 (2016) 42-50 Hidden Shift 5 4 77% PNAS 114, 13 (2017) Microsoft Grover Phase 3 10 35 85% Nat. Comm. 8, 1918 (2017) NSF Grover Boolean 5 16 49 83% Nat. Comm. 8, 1918 (2017) NSF Margolus 3 3 11 90% PNAS 114, 13 (2017) Microsoft Toffoli 3 5 9 90% PNAS 114, 13 (2017) Microsoft Toffoli-4 5 11 22 71% Debnath Thesis NSF Fredkin Gate 3 7 14 86% arXiv:1712.08581 (2017) Intel Fermi-Hubbard Sim. 5 31 132 arXiv:1712.08581 (2017) Intel Scrambling Test 7 15 30 75% arXiv: 1806.02807 (2018) Perimeter, UCB Bayesian Games 5 5 15 Qu. Sci. Tech 3, 045002 (2018) Army Res. Lab. Machine Learning (detection) 5 n/a n/a arXiv:1801.07686 (2018) JQI Machine Learning (state synth) 4 5*N 30*N 90% arXiv 1812.08862 (2018) NASA [[4,2,2]] Error Det. 6-7 20-25 98%-99.9% Sci. Adv. 3, e1701074 (2017) 5 Duke Full Adder 4 4 16 83% In preparation (2018) NSF Simultaneous CNOT 4 2 8 94% In preparation (2018) NSF Deuteron Simulation 3 35 30 <0.5% errorIn preparation (2019) ORNL Circuit QAOA 7-9 42 50 In preparation (2019) Perimeter, Intel

  11. Dynamical Circuits for Machine Learning arXiv 1812.08862 (2018) with A. Perdomo-Ortiz (NASA) M. Benedetti (UC London) see also E. Martinez et al., New J. Phys. 18, 063029 (2016) N=4 qubits encodes “Bars and Stripes” patterns 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 parameters Our task: prepare equal superposition of all B&S states 11 parameters

  12. Hybrid Quantum-Classical Learning Loop

  13. Particle Swarm (classical) optimization 𝐸 𝐿𝑀 : Kullback-Leibler divergence ഥ

  14. ഥ 𝐸 𝐿𝑀 : Kullback-Leibler divergence Bayesian (classical) optimization

  15. N. Yao (UC Berkeley) Quantum Scrambling Litmus Test (7 qubit circuit) B. Yoshida (Perimeter) arXiv:1803.10772 • The “complete diffusion” of entanglement within a system Quantum • Relevant to information evolution in black holes scrambling Hayden and Preskill, J. HEP 9 , 120 (2007); Susskind and Zhao, arXiv:1707.04354 (2017) • OTOC measurements can be ambiguous Arbitrary input state teleportation fidelity 𝑉 𝑉 † † arXiv:1806.02807 (to appear in Nature right soon) teleportation scrambling parameter 𝑡𝑗𝑜𝜄 iff 𝑉 scrambles U :

  16. Simulating the Ground State of the Deuteron ORNL (R. Pooser, E. Dumitrescu, P. Lougovski, A. McCaskey) UMD (K. Landsman, N. Linke, D. Zhu, CM) IonQ (Y. Nam, O. Shehab, CM) canonical UCC ansatz … compiled to our native gate set − (6.125)Z 1 − (9.625)Z 2 H = (15.531709)I + (0.218291)Z 0 −(2.143304)X 0 X 1 −(2.143304)Y 0 Y 1 −(3.913119)X 1 X 2 − (3.913119)Y 1 Y 2 E.F. Dumitrescu et al., arXiv 1801.03897 (2018)

  17. Simulating the Ground State of the Deuteron Extrapolated ground state energy for theoretically determined optimal angles (exact: -2.22 MeV): Noise parameter r Noise parameter r Noise parameter r IBM 3-qubit ansatz UMD 3-qubit ansatz UMD 4-qubit ansatz 3% error 0.7% error (<0.5% error) E.F. Dumitrescu, et al., Phys. Rev. O. Shehab, et al. (in preparation) O. Shehab, et al. (in preparation) Lett. 120 , 210501 (2018) (Note: implementing 3-qubit ansatz on Rigetti system was not possible)

  18. Variational Circuit Simulation of H 2 O The Theory of Variational Hybrid Quantum-Classical Algorithms , New J. Phys. 18 , 023023 (2016) [Aspuru-Guzik group] Binding Accuracy of H 2 O Naïve Optimized Order of Energy Approx. qubits gates qubits gates (Hartrees) Quantum Simulation MFT -74.9624 0.05 +1 term 4 40 2 2 -74.9749 4 +2 terms 80 2 2 -74.9781 +3 terms 8 112 4 6 -74.9804 0.04 +4 terms 8 144 4 8 -74.9828 Error in +5 terms 10 232 5 10 -74.9858 binding +8 terms 10 264 10 -74.9944 60 0.03 energy 10 +10 terms 348 10 -74.9990 87 (Hartrees) +11 terms 10 532 10 -75.0020 90 +13 terms 10 596 10 -75.0074 119 0.02 10 +15 terms 648 10 -75.0087 143 +19 terms 12 730 12 -75.0104 166 +21 terms 12 800 12 -75.0104 206 0.01 EXACT: -75.0116 accuracy target 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Order of Approximation (~qubits, ~ gates )

  19. Variational Circuit Simulation of H 2 O The Theory of Variational Hybrid Quantum-Classical Algorithms , New J. Phys. 18 , 023023 (2016) [Aspuru-Guzik group] Binding Naïve Optimized Order of Energy Accuracy of H 2 O Approx. qubits gates qubits gates (Hartrees) Quantum Simulation MFT -74.9624 0.05 +1 term 4 40 2 2 -74.9749 +2 terms 4 80 2 2 -74.9781 8 +3 terms 112 4 6 -74.9804 +4 terms 8 144 4 8 -74.9828 0.04 +5 terms 10 232 5 10 -74.9858 Error in 10 +8 terms 264 10 -74.9944 60 binding +10 terms 10 348 10 -74.9990 87 0.03 energy +11 terms 10 532 10 -75.0020 90 (Hartrees) Experiment 10 +13 terms 596 10 -75.0074 119 +15 terms 10 648 10 -75.0087 143 0.02 12 +19 terms 730 12 -75.0104 166 +21 terms 12 800 12 -75.0104 206 EXACT: -75.0116 0.01 accuracy target 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Order of Approximation (~qubits, ~ gates )

  20. Variational Circuit Simulation of H 2 O The Theory of Variational Hybrid Quantum-Classical Algorithms , New J. Phys. 18 , 023023 (2016) [Aspuru-Guzik group] Binding Naïve Optimized Order of Energy Accuracy of H 2 O Approx. qubits gates qubits gates (Hartrees) Quantum Simulation MFT -74.9624 0.2 +1 term 4 40 2 2 -74.9749 +2 terms 4 80 2 2 -74.9781 8 +3 terms 112 4 6 -74.9804 +4 terms 8 144 4 8 -74.9828 0.15 +5 terms 10 232 5 10 -74.9858 Error in 10 +8 terms 264 10 -74.9944 60 binding +10 terms 10 348 10 -74.9990 87 energy +11 terms 10 532 10 -75.0020 90 (Hartrees) 0.1 10 +13 terms 596 10 -75.0074 119 +15 terms 10 648 10 -75.0087 143 12 +19 terms 730 12 -75.0104 166 +21 terms 12 800 12 -75.0104 206 0.05 EXACT: -75.0116 Theory Experiment accuracy target 0 0 1 2 3 4 5 Order of Approximation (~qubits, ~ gates )

Recommend


More recommend