† Whither SUSY? G. Ross, Birmingham, January 2013 † whither Archaic or poetic adv 1. to what place? 2. to what end or purpose? conj to whatever place, purpose, etc. [Old English hwider, hwæder; related to Gothic hvadr ē ; modern English form influenced by HITHER ]
Low energy SUSY – to what end or purpose? ¡ ^ ¡ Unification: ¡ SU(5), ¡SO(10),… ¡ ✔ ¡ ¡ ✔ ¡ (?) ¡ M Higgs , M W , Z ! M Planck , M GUT ,.. The hierarchy problem: ¡
ATLAS LHC tests of SUSY
SUSY – to what place? ¡ Little hierarchy problem ^ ¡ MSSM: 105 ¡+(19) ¡Parameters ¡ 2 = ! ! ! i # i 2 2 + + ... M Z a i m M " , l " " , W ! , B ! q g " 2 # > a m ! > 0.6 ! 1 TeV " 2 # 100 m q M Z
An exception: “Natural” SUSY ! , LHC > 250 GeV light ¡stop ¡ ¡ m t FCNC: 1,2 sgenerations heavy † Hierarchy problem: 3 rd sgeneration light †
The Higgs mass in SUSY ? 2 = m q 3 m U 3 ! 900 GeV ( ) 2 M S ! 125 GeV ( LHC ) Atlas – LHC July 2012 CMS at 5 σ significance
SUSY – to what place? ¡ breaking ! Little hierarchy problem definite SUSY structure ^ ¡ MSSM: 105 ¡+(19) ¡Parameters ¡ 2 = ! ! ! i # i 2 2 + + ... M Z a i m M " , l " " , W ! , B ! q g " 2 # > a m ! > 0.6 ! 1 TeV " 2 # 100 m q M Z ! Correlations between SUSY breaking parameters and/or additional low-scale states ¡
SUSY searches - significance SUSY parameters % ( 1/2 % ( Ghilencea, GGr ! v 0 " " m 2 ( # i ) ' * Likelihood ' * $ ( # i ) & ) & ) 1/2 % ( 2 " i # M Z $ ! q = ' * Ellis, Enquist, Nanopoulos, Zwirner # " i M Z & ) i Barbieri, Giudice Fine tuning measure "# 2 ! 9, "# 2 / d . o . f . ! 1 ! q = 100,
Outline The CMSSM I. Scalar focus point Reduced fine tuning II. (G)NMSSM Gaugino focus point Natural SUSY R-parity breaking Supersoft SUSY breaking Compressed spectrum Implications of 125 GeV Higgs ¡ III.
The CMSSM I. µ 0 , m 0 , m 1/2 , A 0 , B 0 assume correlation between SUSY breaking parameters v 2 = m 2 ! Couplings and masses evaluated to two loop (leading log) order ( ) cos 2 2 " ! = 1 2 + g 2 …enhanced sensitivity due to small tree-level 2 8 g 1 Cassel, Ghilencea, GGR c.f. earlier work : Dimopoulos, Giudice Chankowski, Ellis, Olechowski, Pokorski
e.g. CMSSM ! i " µ 0 , m 0 , m 1/2 , A 0 , B 0 Pre-LHC Relic density restricted h 0 resonant annihilation ¡ 1 ! t-channel exchange ¡ 2 h ! ! co-annihilation ¡ 3 ! co-annihilation ¡ 4 t A 0 / H 0 resonant annihilation ¡ • 5 W ithin 3 ! WMAP: ! Min = 15, m h = 114.7 ± 2 GeV < 3 ! WMAP: ! Min = 18, m h = 115.9 ± 2 GeV Cassel, Ghilencea, GGR Limit of RGE focus point ¡λ ¡ increases with m H -natural cancellation of terms for v 2 = m 2 m H U ( M X ) = m t ! R ( M X ) = m t ! L ( M X ) = m 0 ! ) , 2 3 y t ( ) + ! $ . ( ) = m H u ( ) + 1 ( ) + m Q 3 ( ) + m ( ) Q 2 4 ' 2 2 M P ( 1 2 Q 2 2 2 2 2 2 2 2 m H u M P 2 m H u M P M P + . # & " M P 2 % u + . 3 * -
e.g. CMSSM ! i " µ 0 , m 0 , m 1/2 , A 0 , B 0 Relic density restricted h 0 resonant annihilation ¡ 1 ! t-channel exchange ¡ 2 h ! ! co-annihilation ¡ 3 ! co-annihilation ¡ 4 t A 0 / H 0 resonant annihilation ¡ • 5 W ithin 3 ! WMAP: ! Min = 15, m h = 114.7 ± 2 GeV < 3 ! WMAP: ! Min = 18, m h = 115.9 ± 2 GeV Direct SUSY searches: LHC Nov 2012 LHC Jan 2011
e.g. CMSSM ! i " µ 0 , m 0 , m 1/2 , A 0 , B 0 Relic density restricted h 0 resonant annihilation ¡ 1 ! t-channel exchange ¡ 2 h ! ! co-annihilation ¡ 3 ! co-annihilation ¡ 4 t A 0 / H 0 resonant annihilation ¡ • 5 W ithin 3 ! WMAP: ! Min = 15, m h = 114.7 ± 2 GeV < 3 ! WMAP: ! Min = 18, m h = 115.9 ± 2 GeV Direct SUSY searches: LHC Nov 2012 Significant Higgsino LSP component -now excluded by XENON 100 LHC Jan 2011
e.g. CMSSM ! i " µ 0 , m 0 , m 1/2 , A 0 , B 0 Relic density restricted h 0 resonant annihilation ¡ 1 ! t-channel exchange ¡ 2 h ! ! co-annihilation ¡ 3 ! co-annihilation ¡ 4 t A 0 / H 0 resonant annihilation ¡ • 5 W ithin 3 ! WMAP: ! Min = 15, m h = 114.7 ± 2 GeV < 3 ! WMAP: ! Min = 18, m h = 115.9 ± 2 GeV m H > 125 GeV ! > 300
CMSSM ¡summary: ¡ • Minimises MSSM fine tuning (focus point) (c.f. gauge mediation ! >> ! CMSSM ) [ ] = 15(29), Max ! EW , ! " m h = 114(116) ± 2 GeV • Complementary DM & LHC searches ¡ DM ¡ ! " 100 Sensitivity # (10 $ 100) (Now ¡achieved!) ¡ ( ) LHC ¡ Full region LHC 14 TeV 10 fb ! 1 • BUT ! > 300 for m H = 126 GeV ! 10) (If give up on unification of soft parameters fine tuning reduced by factor
Reduced fine tuning : II. …more correlations between parameters…later …beyond the MSSM e.g. singlet extensions – the NMSSM 2 ! V = " H u H d Additional quartic interaction
Fine tuning in the NMSSM ( ! " 0.7 † ) Higgs not lightest scalar Focus-point; DM exclusion ( ! h t not included) Kowalska, Munir, Roszkowski, Sessolo, Trojanowski, Tsai
Reduced fine tuning : BMSSM - General Operator analysis d 2 " 1 2 , ( ) ( ) # ! L = µ 0 + c 0 S S = m 0 "" Dimension 5 H 1 H 2 M * ( ) h 1 h 2 + " 2 h 1 h 2 2 + h 2 " 1 = µ 0 ( ) , " 2 = c 0 m 0 2 2 ; ! V = " 1 h 1 M * M * ! ! Cassel, Ghilencea, GGR Casas, Espinosa, Hidalgo Dine, Seiberg, Thomas Batra, Delgardo, Tait Kaplan, m h m h + ¡dim ¡5 ¡operators ¡ MSSM ¡ 2 h 1 h 2 ! 1 h 1 …effect mainly comes from term … origin?
Reduced fine tuning : singlet extensions GNMSSM µ S >> m 3/2 GNMSSM = H u H d 2 / µ s + µ H u H d ( ) W eff NMSSM c.f. ( ) H u H d µ 2 + H d v 2 = ! m 2 2 H u µ S " Reduced fine tuning mainly for GNMSSM • CMSSM • CGNMSSM • CNMSSM (Higgs not universal) LHC +DM constraints LHC constraints applied applied GGR, Schmidt-Hoberg , Staub † c.f. Hall, Pinner, Ruderman
GNMSSM R-symmetry ensures Singlet extensions natural
GNMSSM NMSSM spectrum N q 10 q 5 q H u q H d q S No perturbative μ term Commutes with SO(10) 4 1 1 0 0 2 Anomaly cancellation 8 1 5 0 4 6 R-symmetry ensures singlets light up and down Yukawas allowed D=5 operators ! 1 1 3 q 10 + q 5 + q H u + q H d = 4 ! 3q 10 + q 5 = 0 ! Mod N Mod N M QQQL M LLH u H u Weinberg operator SUSY breaking R ! Z 2 R " parity W , !! R=2 non=perturbative breaking R Z 4,8 O ( m 3/2 µ ! m 3/2 , M 2 QQQL ) Domain walls and tadpoles safe Abel W = W MSSM + ! SH u H d + " S 3 + # W 2 S + m 3/2 S 2 ! W Z 4 R ! m 3/2 H u H d + m 3/2 μ term and mass terms “natural” GNMSSM (c.f. NMSSM) 2 S ! W Z 8 R ! m 3/2
Dark Matter structure ( ! LSP " ! DM ) ( ! LSP " ! DM ) Xenon1T Stau co-annihilation DM searches insensitive
( ) Higgs structure h u , h d , s • µ s ! µ MSSM SUSY structure with heavy Higgs • µ s , m s , b s ! µ h 1 ! H u , d + ! S , h 2 = S " ! H u , d may be lighter than LEP bound ... h 2 for the case m h 2 < m h 1 ! m h 1 v/s
( ) Higgs structure h u , h d , s • µ s ! µ MSSM SUSY structure with heavy Higgs • µ s , m s , b s ! µ h 1 ! H u , d + ! S , h 2 = S " ! H u , d may be lighter than LEP bound ... h 2 !! ... h 1 may have enhanced rate ¡ ± ! u , d H Schmidt-‑Hoberg, ¡Staub ¡
( ) Higgs structure h u , h d , s • µ s ! µ MSSM SUSY structure with heavy Higgs • µ s , m s , b s ! µ h 1 ! H u , d + ! S , h 2 = S " ! H u , d may be lighter than LEP bound ... h 2 !! ... h 1 may have enhanced rate ¡ ... h 1 may have enhanced LSP annihilation rate to photons..? ¡ ! ! , " # 1, m A 1 ! 240 $ 280 GeV Fermi 135GeV line : ¡ Schmidt-‑Hoberg, ¡Staub, ¡Winkler ¡
GNMSSM benchmark point
Stau co-annihilation limits SUSY masses – nearly excluded by LHC GNMSSM benchmark point
Reduced fine tuning : nonuniversal gaugino masses ( ) " 6 g 2 16 ! 2 d 2 | M 2 | 2 " 6 2 = 3 2 | y t | 2 ( m H u 2 + m Q 3 2 + m 2 | M 1 | 2 2 ) + 2 | a t | 2 dt m H u 5 g 1 u 3 2 ! M 3 2 at M SUSY New focus point: cancellation between M 3 and M 2 contributions if M 2 M 3 : M 2 : M 1 = ! 3 :1: ! 1
Reduced fine tuning : nonuniversal gaugino masses ( ) " 6 g 2 16 ! 2 d 2 | M 2 | 2 " 6 2 = 3 2 | y t | 2 ( m H u 2 + m Q 3 2 + m 2 | M 1 | 2 2 ) + 2 | a t | 2 dt m H u 5 g 1 u 3 2 ! M 3 2 at M SUSY New focus point: cancellation between M 3 and M 2 contributions if M 2 Natural ratios? e.g.: GUT: ! N " 24 # 24 ( ) symm = 1 + 24 + 75 + 200; ( ) symm = 1 + 54 + 210 + 770 45 # 45 SU (5) : SO (10) : ! 3 :1: ! 1 2.7 ! 3 :1:0.5 ! 1 # & ) : " 33 ( ) : " 1 + ! GS ( String: (OII, also mixed moduli anomaly) 3 + ! GS 5 + ! GS % ( $ '
Gaugino focus point - Phenomenology • Gaugino mass ratios …. ¡gauginos ¡can ¡be ¡very ¡heavy ¡ • Light neutralino and 2 charginos nearly degenerate Bino or Higgsino LSP candidate + for M 1 < µ ,
Summary • CMSSM (and other MSSMs) highly fine tuned
Summary • CMSSM (and other MSSMs) highly fine tuned • BCMSSM: more correlations or BMSSM ¡ GNMSSM ! ! -(G) NMSSM Reduced ! Z 4 R , Z 8 R SUSY states can be (slightly)heavier m h ! 130 GeV LHC bounds already severe with conventional cosmology
Recommend
More recommend