white matter tractography and human brain connections
play

White Matter Tractography and Human Brain Connections Using GPUs - PowerPoint PPT Presentation

White Matter Tractography and Human Brain Connections Using GPUs Mois es Hern andez Fern andez Istvan Reguly, Mike Giles, Stephen Smith and Stamatios N. Sotiropoulos GPU Technology Conference 2016 dMRI & Tractography Low Path


  1. White Matter Tractography and Human Brain Connections Using GPUs Mois´ es Hern´ andez Fern´ andez Istvan Reguly, Mike Giles, Stephen Smith and Stamatios N. Sotiropoulos GPU Technology Conference 2016

  2. dMRI & Tractography Low Path Probability High Path Probability Mois´ es Hern´ andez Fern´ andez, FMRIB 1. dMRI & Tractography 2 / 23

  3. Outline 1. Introduction to diffusion MRI & Tractography 2. Parallelization of computational diffusion MRI using GPUs Voxelwise Fibre Orientation Estimation on GPUs Probabilistic tractography on GPUs 3. Conclusions Mois´ es Hern´ andez Fern´ andez, FMRIB 1. dMRI & Tractography 3 / 23

  4. diffusion MRI (dMRI) Molecules are in constant motion. We want to quantify water diffusion within a tissue. Isotropic vs Anisotropic diffusion. Different tissues: Grey Matter vs White Matter. It is possible to estimate the principal diffusion orientations in each voxel of the brain. Mois´ es Hern´ andez Fern´ andez, FMRIB 1. dMRI & Tractography 4 / 23

  5. diffusion MRI (dMRI) Molecules are in constant motion. We want to quantify water diffusion within a tissue. Isotropic vs Anisotropic diffusion. Different tissues: Grey Matter vs White Matter. It is possible to estimate the principal diffusion orientations in each voxel of the brain. Mois´ es Hern´ andez Fern´ andez, FMRIB 1. dMRI & Tractography 4 / 23

  6. diffusion MRI (dMRI) Molecules are in constant motion. We want to quantify water diffusion within a tissue. Isotropic vs Anisotropic diffusion. Different tissues: Grey Matter vs White Matter. It is possible to estimate the principal diffusion orientations in each voxel of the brain. Mois´ es Hern´ andez Fern´ andez, FMRIB 1. dMRI & Tractography 4 / 23

  7. Tractography Post-mortem dissection of some white matter fibre bundles (Tracts). Tractography: The post-imaging reconstruction of fibre bundles anatomical connections in the brain. In-vivo virtual dissection. Mois´ es Hern´ andez Fern´ andez, FMRIB 1. dMRI & Tractography 5 / 23

  8. Tractography Post-mortem dissection of some white matter fibre bundles (Tracts). Tractography: The post-imaging reconstruction of fibre bundles anatomical connections in the brain. In-vivo virtual dissection. Mois´ es Hern´ andez Fern´ andez, FMRIB 1. dMRI & Tractography 5 / 23

  9. dMRI &Tractography Applications Neurosurgical Planning. Neurological and psychiatric disorders: e.g. Tracts Deterioration in Alzheimer. Brain systems wiring and network analysis. www.humanconnectome.org. Mois´ es Hern´ andez Fern´ andez, FMRIB 1. dMRI & Tractography 6 / 23

  10. dMRI &Tractography Applications Neurosurgical Planning. Neurological and psychiatric disorders: e.g. Tracts Deterioration in Alzheimer. Brain systems wiring and Jin, Yan, et al. 2015 network analysis. www.humanconnectome.org. Mois´ es Hern´ andez Fern´ andez, FMRIB 1. dMRI & Tractography 6 / 23

  11. dMRI &Tractography Applications Neurosurgical Planning. Neurological and psychiatric disorders: e.g. Tracts Deterioration in Alzheimer. Brain systems wiring and network analysis. www.humanconnectome.org. Mois´ es Hern´ andez Fern´ andez, FMRIB 1. dMRI & Tractography 6 / 23

  12. dMRI &Tractography These tractography approaches can require very high computational resources. Computation times can be significant: Hours to Days depending on data & application. We have designed and implemented a CUDA framework to massively accelerate these estimations 1. Voxelwise local modelling to estimate fibre orientations: Hundreds of thousands model fits to estimate orientations. Quite suitable for GPUs. 2. Global modelling: Integrates these orientations and estimate long-range connections across the brain volume. Not as suitable for GPUs. Mois´ es Hern´ andez Fern´ andez, FMRIB 1. dMRI & Tractography 7 / 23

  13. Voxelwise Fibre Orientation Estimation We want to estimate the main fibre orientations at each voxel. Input: Many diffusion-weighted measurements in each voxel Output: Orientations of fibres in each voxel. Ball & sticks model. Bayesian inference framework: L P ( Parameters | Data ) = � S k = S 0 [(1 − f j ) exp( − b k d ) P ( Data | Params ) P ( Params ) j =1 L P ( Data ) � f j exp( − b k d ( g T k v j ) 2 )] + MCMC Sampling ( ∼ 5000 iters) j =1 Parameters initialized using Levenberg-Marquardt . Mois´ es Hern´ andez Fern´ andez, FMRIB Voxelwise application 8 / 23

  14. Voxelwise Fibre Orientation Estimation We want to estimate the main fibre orientations at each voxel. Input: Many diffusion-weighted measurements in each voxel Output: Orientations of fibres in each voxel. Ball & sticks model. Bayesian inference framework: P ( Parameters | Data ) = L P ( Data | Params ) P ( Params ) � S k = S 0 [(1 − f j ) exp( − b k d ) P ( Data ) j =1 L � f j exp( − b k d ( g T k v j ) 2 )] + MCMC Sampling ( ∼ 5000 iters) Parameters initialized using j =1 Levenberg-Marquardt . Mois´ es Hern´ andez Fern´ andez, FMRIB Voxelwise application 8 / 23

  15. Inferring fibre orientations on GPUs M VOXELS Thread Block 0 ............................... Q-2 Q-1 ................................... 0 1 2 N VOXELS ... Thread Block X ...................... Q-2 Q-1 ................................... 0 1 2 Each voxel is assigned to a Thread. Mois´ es Hern´ andez Fern´ andez, FMRIB Voxelwise application 9 / 23

  16. Inferring fibre orientations on GPUs M VOXELS Thread Block 0 ............................... Q-2 Q-1 ................................... 0 1 2 N VOXELS ... Thread Block MxN-1 ...................... Q-2 Q-1 ................................... 0 1 2 Each voxel is assigned to a Thread Block. Mois´ es Hern´ andez Fern´ andez, FMRIB Voxelwise application 9 / 23

  17. Inferring fibre orientations on GPUs ... g 0 g 1 g 2 g Q -1 ... g Q g Q +1 g Q +2 g 2 Q -1 g 2 Q g 2 Q +1 ... K Gradient Directions ... Thread Thread Thread Thread 0 (Leader) 1 2 Q -1 MCMC Levemberg Marquardt T iterations Active Threads S iterations Active Threads in a Block in a Block Param 1 0 1 2 3 4 ...... Q -2 Q -1 0 1 2 3 4 ...... Q -2 Q -1 1. Task 1 1. Task 1 ...... ...... 2. synchronise() 2. synchronise() ...... ...... 3. Task 2 3. Task 2 ...... ...... 4. synchronise() 4. synchronise() ...... ...... 5. Task 3 5. Task 3 . . ...... . . 6. synchronise() . . ...... 7. Task 4 ...... Param R 0 1 2 3 4 ...... Q -2 Q -1 8. synchronise() ...... 1. Task 1 9. Task 5 ...... 2. synchronise() ...... 3. Task 2 ...... TASKS: 4. synchronise() ...... 1. Calculate Gradient 5. Task 3 2. Calculate Hessian Matrix 3. Update Parameters TASKS: 4. Calculate Cost Function 1. Propose a new Parameter 5. Check Convergence 2. Calculate Predicted Signal - Likelihood 3. Calculate Posterior & Accept/Reject Parameter Thread working Idle thread Mois´ es Hern´ andez Fern´ andez, FMRIB Voxelwise application 10 / 23

  18. Fibre orientations: Speedup 1000000 1 Tesla C2050 GPU vs 1 Intel 100000 Xeon E5620 core. Time in seconds CPU Speedup: 112X 10000 102 Tesla M2090 CPU vs 102 1000 Intel Xeon X5650. GPU Speedup: 120X 100 1 2 3 Number of Fibres Directions number: 64 128 256 Mois´ es Hern´ andez Fern´ andez, FMRIB Voxelwise application 11 / 23

  19. Fibre orientations: Speedup 100000 1 Tesla C2050 GPU vs 1 Intel 10000 Time in seconds Xeon E5620 core. Multi CPU Speedup: 112X 1000 102 Tesla M2090 CPU vs 102 100 Intel Xeon X5650. Multi GPU Speedup: 120X 10 1 2 3 Number of Fibres Directions number: 64 128 256 Mois´ es Hern´ andez Fern´ andez, FMRIB Voxelwise application 11 / 23

  20. Fibre Orientations: Validation d S0 f1 5 0 0 3 0 0 3 0 0 2 5 0 2 5 0 4 0 0 2 0 0 2 0 0 3 0 0 Corpus 1 5 0 1 5 0 Callosum 2 0 0 1 0 0 1 0 0 1 0 0 5 0 5 0 Distribution of -3 x 1 0 0 .9 1 1.1 1 3 0 1 3 1 1 3 2 0 .4 5 0 .4 7 0 .4 9 the estimated 2 5 0 2 5 0 2 5 0 2 0 0 2 0 0 2 0 0 parameters after 1 5 0 1 5 0 1 5 0 Centrum repeating the Semiovale 1 0 0 1 0 0 1 0 0 experiment 1000 5 0 5 0 5 0 times with CPU -3 x 1 0 0 .9 1 1.1 1 2 8 1 2 9 1 3 0 0 .2 4 0 .2 6 0 .2 8 and GPU 3 0 0 2 5 0 2 0 0 2 5 0 2 0 0 1 6 0 2 0 0 1 5 0 1 2 0 Grey 1 5 0 Matter 1 0 0 8 0 1 0 0 5 0 4 0 5 0 -4 x 1 0 9 .4 9 .5 9 .6 2 9 0 2 9 2 2 9 4 0 .0 0 5 0 .0 1 0 .0 1 5 CPU GPU Mois´ es Hern´ andez Fern´ andez, FMRIB Voxelwise application 12 / 23

  21. Probabilistic Tractography Compute a global anatomical brain High memory requirements connectivity map integrating the brain fibre orientations of continuous voxels. Propagate N streamlines from seeds, choosing orientations randomly. Probability of connection between 2 regions: P AB = M/N. M: number of streamlines that go through B. Mois´ es Hern´ andez Fern´ andez, FMRIB Probabilistic Tractography 13 / 23

  22. Probabilistic Tractography Compute a global anatomical brain High memory requirements connectivity map integrating the brain fibre orientations of continuous voxels. Propagate N streamlines from seeds, choosing orientations randomly. Probability of connection between 2 regions: P AB = M/N. M: number of streamlines that go through B. Mois´ es Hern´ andez Fern´ andez, FMRIB Probabilistic Tractography 13 / 23

Recommend


More recommend