what can we do with a quantum degenerate mixture
play

What can we do with a quantum degenerate mixture ? v = 41, J = 1 - PowerPoint PPT Presentation

Nambu Symposium @OCU, Dec. 13, 2018 What can we do with a quantum degenerate mixture ? v = 41, J = 1 Shin Inouye (3) 1 S + Osaka City University 875nm 641nm v = 91, J = 0 X 1 S + v = 0, J=0 X 1 S + Ion counts [arb.units] 3.0 2.0 1.0


  1. Nambu Symposium @OCU, Dec. 13, 2018 What can we do with a quantum degenerate mixture ? v = 41, J = 1 Shin Inouye (3) 1 S + Osaka City University 875nm 641nm v = 91, J = 0 X 1 S + v = 0, J=0 X 1 S + Ion counts [arb.units] 3.0 2.0 1.0 0.0 -5 0 5 10 15 Time [ µ s]

  2. Nambu Symposium @OCU, Dec. 13, 2018 Outline How to cool atoms Properties of BEC Tuning interactions (Feshbach resonance) Cold molecules Conclusion and Outlook

  3. Everybody loves to cool liquids ... but, we are interested in cooling gases!

  4. Significance of cold atom research “Ideal system” to study Condensed Matter Physics! Awarded in 2001 Produced in 1995 � Cornell, Ketterle, Wieman � Anderson et al., Science, 269 198 (1995)

  5. phys.org March 3, 2017

  6. What is ultracold quantum gas? Further lower temperature Fermions Bosons E F Fermi sea of atoms BEC gradually emerges for T<T F phase transition at T C

  7. Problem with gases: Typical Tc is quite low 2/3 h 2 ! $ n T c = # & 2 π mk B " 2.612 % 1K = 100nK 0. 000 000 Tc < 1mm 300K � "Tokyo" absolute zero � ”Osaka"

  8. Laser cooling � ? ?

  9. Technological breakthroughs laser cooling � evaporative cooling 300 K to 1 mK 1 mK to 100 nK (Magnetic trap) (MOT) -> lowest man-made temperature � A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle: Adiabatic and Evaporative Cooling of Bose-Einstein condensates below 500 Picokelvin. Science 301, 1513-1515 (2003).

  10. Evaporative cooling

  11. Bose-Eintein condensation Time-of-flight � Release atoms from the trap, wait for tens of milli-seconds, and take shadow picture. Suddenly momentum distribution becomes narrower. ↓ Bose-Einstein Condensation! Anderson et al., Science, 269 198 (1995)

  12. Nambu Symposium @OCU, Dec. 13, 2018 Outline How to cool atoms Properties of BEC Tuning interactions (Feshbach resonance) Cold molecules Conclusion and Outlook

  13. Typical parameters •Density: ~ 10 14 cm -3 •Temperature: < 100 nK •Number of atoms: < 10 7 •Size: 20X20X200 µ m •Life time � > 10 s •Atomic species � Rb, Na, Li, … Properties of a BEC •gaseous superfluid •macroscopic wavefunction (Quantum depletion: alkali BEC < 1%, liq. He >90%)

  14. What we are looking at? Kinetic Interaction Confining energy between atoms potential It is useful to introduce y (r) c-number quantum fluctuation

  15. Order parameter and Spontaneous Symmetry Breaking y (r) satisfies Penrose-Onsager relation: vanishes as |r-r'|→∞ Hamiltonian is unchanged under global gauge transformation: Nambu-Goldstone mode: phonon w phonon particle (~k 2 ) (~k) k

  16. Direct confirmation of macroscopic wavefunction? Interference! Classical mechanics Quantum mechanics

  17. | y 1 ( r,t =0)| 2 | y 2 ( r,t =0)| 2 | y 1 ( r, t = T ) + y 2 ( r, t = T ) | 2 M. R. Andrews et al ., Science 275 , 637 (1997)

  18. Measurement of 1st-order spatial coherence Extract matterwave from two separated points and make them interfere. I. Bloch, T. W. Hänsch & T. Esslinger Nature 403, 166–170 (2000)

  19. Vortex !

  20. Rotate a BEC with a laser beam K. W. Madison, F. Chevy, W. Wohlleben*, and J. Dalibard Phys. Rev. Lett. 84, 806–809 (2000) Vortex Formation in a Stirred Bose-Einstein Condensate

  21. Vortex lattice ! Abrikosov lattice J.R. Abo-Shaeer, C. Raman, J.M. Vogels, and W. Ketterle: Observation of Vortex Lattices in Bose-Einstein Condensates. Science 292, 476-479 (2001).

  22. sweeping a laser beam to generate vortex!

  23. (wavefronts of matterwaves realeased from two BECs)

  24. BEC with a vortex

  25. Interferometric detection of vortex pair "Observation of vortex phase singularities in Bose-Einstein condensates." S. Inouye et al., PRL, 87 , 080402 (2001).

  26. Nambu Symposium @OCU, Dec. 13, 2018 Outline How to cool atoms Properties of BEC Tuning interactions (Feshbach resonance) Cold molecules Conclusion and Outlook

  27. Kinetic Interaction Confining energy between atoms potential Can we tune the scattering length?

  28. Tuning the interaction (Feshbach resonance) Herman Feshbach colliding atoms

  29. Use nuclear spin

  30. Interference!

  31. “U” is modified by factor of 20 "Observation of Feshbach resonances in a Bose-Einstein condensate." S. Inouye et al. , Nature 392 , 151 (1998).

  32. “U” is modified by seven orders of magnitude "Extreme Tunability of Interactions in a 7Li Bose-Einstein Condensate“ S. E. Pollack, D. Dries, M. Junker, Y. P. Chen, T. A. Corcovilos, and R. G. Hulet, Physical Review Letters 102, 090402 (2009).

  33. ( ) æ ö ¶ y p 2 2 r ! 4 ! a ( ) ( ) 2 ç ÷ = - Ñ + + y y 2 ! i V ( r ) r r ç ÷ trap ¶ t 2 m m è ø "Extreme Tunability of Interactions in a 7Li Bose-Einstein Condensate“ S. E. Pollack, D. Dries, M. Junker, Y. P. Chen, T. A. Corcovilos, and R. G. Hulet, Physical Review Letters 102, 090402 (2009).

  34. Nambu Symposium @OCU, Dec. 13, 2018 Outline How to cool atoms Properties of BEC Tuning interactions (Feshbach resonance) Cold molecules Conclusion and Outlook

  35. What can we do with two BECs? 41 K 87 Rb Make molecules!?

  36. Cold ions Cold molecules? Cold atoms (trapped ions) Blatt & Wineland, Nature Anderson et al., Science, 453 1008 (2008) 269 198 (1995) “New Frontier” � Bose Condensation � Strongly correlated gas � Frequency standards � Frequency standards � Quantum Information

  37. “Indirect” method (2005~) ground state Feshbach molecule degenerate mixture (d: large) (d:small) Feshbach resonance T~100nK T~100nK (Still Quantum Degenerate) Most difficult?

  38. No heating: 100nK out of 6000K will kill the sample! STIRAP slowly 100nK 6000 K *Stimulated Raman Adiabatic Passage � Find the right excited state � Stabilize two laser frequencies in ~10 -10 level (i.e. ~kHz level )

  39. Achieving rovibrational ground state 641nm pulse 0.16 Intensity [arb.units] 875nm pulse v = 41, J = 1 0.12 (3) 1 S + 0.08 875nm 0.04 641nm v = 91, J = 0 0.00 X 1 S + -5 0 5 10 15 Time [ µ s] v = 0, J=0 Ion counts [arb.units] X 1 S + 3.0 2.0 1.0 0.0 K. Aikawa et al., PRL 105 , 203001 -5 0 5 10 15 (2010) Time [ µ s]

  40. There is a good news and bad news... --- Good news is we produced ultracold groundstate polar molecules! --- Bad news is the density is really really low!

  41. Ultracold polar molecules near degeneracy (by JILA) Ultracold KRb molecules imaged by direct absorption D.S. Jin and J. Ye, Physics Today, May 2011

  42. Directional chemistry (JILA) same internal states AND dipoles aligned by an external field m=+1/2 1/2 Electric field (~kV/cm) K.-K. Ni et al., Nature 464, 1324 (2010)

  43. Measure time variation of fundamental constants! General relativity + L -CDM model is successful in explaining following phenomena: • accelerating expansion of universe • Cosmic Microwave Background • Large scale structure However, origin of dark energy (and dark matter) is not understood. Possible extensions to the L -CDM Quintessence → Fluctuation of fundamental constants?? m 1 2 1 e g µ = » a = e , etc. P pe 4 ! c m 1836 0 p We focused on electron-to-proton mass ratio µ 45

  44. The limit of time variation of m e / M p (≡ µ ) Radio-astronomical observations Alcohol in the early universe (J. Bagdonaite et al , Science 339, 46 (2013)) - (in 7 � 10 9 years) D µ µ = ± ´ 7 / ( 0 . 0 1 . 0 ) 10

  45. The limit of time variation of m e / M p (≡ µ ) Laboratory observations molecular spectroscopy of SF 6 A. Shelkovnikov et al, PRL 100, 150801 (2008) µ µ = ± ´ - 14 ! / ( 3 . 8 5 . 6 ) 10 / year SYRTE rovibrational + frequency comb transition in SF 6 Optical Fiber link (~43km) Cs Fountain

  46. Why molecule? Frequencies are directly related to the inertial mass of nucleus. δ E E = 1 δ m 2 m Large m Small m

  47. Ultracold molecule is ideal for precision spectroscopy! Average of 5000 sweeps (6 hours) FWHM � 50Hz 634 963 783.458 � 0.093 Hz Zeeman shift compensation 634 963 781.564 � 0.094 Hz S/N ~ 500 (c.f. Number of molecules used ~ 10 6 )

  48. Calibration of the magnetic field m F = 1 2.4 2.4 2.4 2.4 F = 1 m F = 0 s s s s ��� F = 0 m F = 0 Time m F = 0 m F = 1 m F = 0 m F = 1 Magnetic Field (mG) Time (hour)

  49. Good News: we broke the world record set by SF 6 ! 1 ∂ µ ) × 10 − 14 / year ( ∂ t = 0.30 ± 1.00 Stat ± 0.16 Sys Factor of µ five improvement A. Shelkovnikov et al., 1 ∂ µ ) × 10 − 14 / year ( ∂ t = 3.8 ± 5.6 PRL 100, 150801(2008) µ

  50. J. Kobayashi, A. Ogino, and SI

  51. Francesca Ferlaino and Rudolf Grimm, Physics 3 , 9 (2010).

  52. What can we do with two BECs? 41 K 87 Rb Phase separation!?

  53. Phase separation after quenching the interaction 1D 2D 36μm x 208μm(1pix.=2.6μm)

  54. Digital Mirror Device Holographically generated ring beam

Recommend


More recommend