solids free electron gas
play

Solids (free electron gas) Simplest model : non-interacting - PowerPoint PPT Presentation

EE201/MSE207 Lecture 13 Solids (free electron gas) Simplest model : non-interacting electrons (no Coulomb interaction, no exchange correlation) Idea: electrons occupy energy states from the lowest energy up (fermions) At zero temperature, the


  1. EE201/MSE207 Lecture 13 Solids (free electron gas) Simplest model : non-interacting electrons (no Coulomb interaction, no exchange correlation) Idea: electrons occupy energy states from the lowest energy up (fermions) At zero temperature, the highest occupied energy is called Fermi energy. So, we need to count available states. Assume many electrons, so that even though states are discrete, we always consider β€œthick slices” in energy, and are interested only in density of states. Density of states (DOS): number of available states per unit of energy (eV). DOS does not depend on temperature (except due to change of material parameters), while Fermi level depends on temperature. Goal for today: find DOS and Fermi energy (at π‘ˆ = 0 ) for quantum wires (1D), quantum wells (2D), and solids (3D)

  2. Quantum wire: large 1D well (not in textbook) 𝐹 π‘œ = π‘œ 2 𝜌 2 ℏ 2 ( π‘œ ≫ 1 , 𝑏 is large) 2𝑛𝑏 2 2 𝑏 sin π‘œπœŒ 2 𝑏 sin 𝑙 π‘œ 𝑦 πœ” π‘œ 𝑦 = 𝑏 𝑦 = 𝑙 π‘œ = π‘œπœŒ 𝑏 ≫ . . . πœ€π‘™ 3πœ€π‘™ 5πœ€π‘™ 7πœ€π‘™ 𝑏 πœ€π‘™ = 𝜌 One state per 𝑙 𝑏 0 2πœ€π‘™ 4πœ€π‘™ 6πœ€π‘™ 8πœ€π‘™ However, it is more convenient to use both positive and negative 𝑙 (physically corresponds to two directions of momentum) Then one state per πœ€π‘™ = 2𝜌 𝑏 βˆ’3πœ€π‘™ βˆ’2πœ€π‘™ 𝑙 βˆ’πœ€π‘™ 0 2πœ€π‘™ 3πœ€π‘™ 4πœ€π‘™ πœ€π‘™ Equivalently, one state per πœ€π‘ž = ℏ πœ€π‘™ = 2πœŒβ„ 𝑏 π‘ž βˆ’3πœ€π‘ž 2πœ€π‘ž 3πœ€π‘ž 4πœ€π‘ž βˆ’2πœ€π‘ž βˆ’πœ€π‘ž πœ€π‘ž 0

  3. Quantum wire (cont.) πœ€π‘ž = 2πœŒβ„ Rule: one state (quantum level) per 𝑏 Δ𝑂 = Ξ”π‘ž 𝑏 length in space Γ— length in π‘ž space So, number of states 2πœŒβ„ 2πœŒβ„ 𝐸 𝐹 ≑ Δ𝑂 Density of states (usually measured in 1/eV) Δ𝐹 𝐹 π‘œ = π‘œ 2 𝜌 2 ℏ 2 Δ𝐹 = 2π‘œ 𝜌 2 ℏ 2 Δ𝐹 = 𝑛𝑏 2 Ξ”π‘œ π‘œπœŒ 2 ℏ 2 = 𝑏 𝑛 ⟹ Ξ”π‘œ ⟹ 2𝑛𝑏 2 2𝑛𝑏 2 πœŒβ„ 2𝐹 𝐸 𝐹 ∝ 1 𝐸 𝐹 = 𝑏 𝑛 Γ— 2 (spin) decreases πœŒβ„ 2𝐹 𝐹 with energy (absent for high magnetic field) We have 𝑂 ≫ 1 electrons, what is the maximum occupied energy? Fermi energy 𝑂 2 𝑂 2 2 𝜌 2 ℏ 2 = 𝜌 2 ℏ 2 𝑏 : (linear) density of electrons 𝑂 𝐹 𝐺 = 𝐹 𝐺 is usually measured in eV 2𝑛𝑏 2 8𝑛 𝑏 (sometimes in Kelvin) spin (absent for high B-field)

  4. Quantum well, 2D electron gas, 2DEG (large 2D well) (not in textbook) 𝐹 π‘œ,π‘š = 𝜌 2 ℏ 2 𝑏 2 + π‘š 2 π‘œ 2 𝑐 π‘œ, π‘š ≫ 1 𝑐 2 2𝑛 𝑏 2 𝑏 sin π‘œπœŒ 2 𝑐 sin π‘šπœŒ πœ” 𝑦, 𝑧 = 𝑏 𝑦 𝑐 𝑧 𝑙 𝑦 𝐹 = ℏ 2 𝑙 𝑧 2 + 𝑙 𝑧 2 ) ⟹ 2𝑛 (𝑙 𝑦 equal 𝑙 𝑧 𝑙 𝑧 π‘ž 𝑧 π‘š equal energy energy line line π‘œ 𝑙 𝑦 𝑙 𝑦 π‘ž 𝑦 Δ𝑂 = (Ξ”π‘ž 𝑦 𝑏)(Ξ”π‘ž 𝑧 𝑐) Again the rule 2πœŒβ„ 2 (so far no spin) area in space Γ— area in π‘ž space 2πœŒβ„ 2

  5. π‘ž 𝑧 2D electron gas (cont.) 𝑐 Δ𝑂 = (Ξ”π‘ž 𝑦 𝑏)(Ξ”π‘ž 𝑧 𝑐) π‘ž 𝑦 2πœŒβ„ 2 𝑏 2 + π‘ž 𝑧 2 = π‘ž 2 Density of states 𝐹 = π‘ž 𝑦 Δ𝐹 = 2π‘žΞ”π‘ž = π‘žΞ”π‘ž π‘ž 𝑧 2𝑛 2𝑛 2𝑛 𝑛 Ξ”π‘ž π‘ž π‘ž Δ𝑂 = 𝑏𝑐 2πœŒπ‘ž Ξ”π‘ž 𝐸 𝐹 = Δ𝑂 Δ𝐹 = 𝑏𝑐 𝑛 π‘ž 𝑦 2πœŒβ„ 2 2πœŒβ„ 2 𝐸 𝐹 𝑛 𝐸(𝐹) does not depend = Γ— 2 (spin) 𝐡 = 𝑏𝑐 (area) on energy 𝐹 2πœŒβ„ 2 𝐡 (absent for high magnetic field) Fermi energy 2 2 2𝑛 = πœŒβ„ 2 2 𝑂 = 𝐡 πœŒπ‘ž 𝐺 2πœŒβ„ 2 Γ— 2 spin = π΅π‘ž 𝐺 𝐹 𝐺 = π‘ž 𝐺 𝑂 π‘ž 𝑧 π‘ž 𝐺 2πœŒβ„ 2 𝑛 𝐡 π‘ž 𝑦 (twice larger 𝐹 𝐺 in high B-field) 2D density in space

  6. Example π‘œ = 𝑂 1 𝐡 = 10 12 cm 2 . 2DEG in GaAs, Find Fermi energy. 𝑛 eff = 0.067 𝑛 0 𝐹 𝐺 = πœŒβ„ 2 π‘œ = 𝜌 1.05 βˆ™ 10 βˆ’34 Js 2 0.067 βˆ™ 9.1 βˆ™ 10 βˆ’31 kg βˆ™ 10 16 1 m 2 = 𝑛 = 5.68 βˆ™ 10 βˆ’21 J = 35 meV = 410 K eV = 1.6 βˆ™ 10 βˆ’19 J 𝑙 𝐢 = 1.38 βˆ™ 10 βˆ’23 J K

  7. Large 3D well: theory of metals π‘Š = 𝑏𝑐𝑑 (slightly different in textbook) 𝑑 Same rule Δ𝑂 = (Ξ”π‘ž 𝑦 𝑏)(Ξ”π‘ž 𝑧 𝑐)(Ξ”π‘ž 𝑨 𝑑) = π‘Š Ξ”π‘ž 𝑦 Ξ”π‘ž 𝑧 Ξ”π‘ž 𝑨 𝑐 2πœŒβ„ 3 2πœŒβ„ 3 𝑏 𝐸 𝐹 = Δ𝑂 π‘ž 𝑨 Density of states Δ𝐹 Ξ”π‘ž π‘ž Δ𝑂 = π‘Š 4πœŒπ‘ž 2 Ξ”π‘ž π‘ž 2 = π‘ž Δ𝐹 = Ξ” 𝑛 Ξ”π‘ž π‘ž 𝑧 2πœŒβ„ 3 2𝑛 π‘ž 𝑦 = π‘Š 𝑛 3/2 𝐹 Δ𝑂 Δ𝐹 = π‘Š 4πœŒπ‘žπ‘› 2πœŒβ„ 3 = π‘Š 𝑛 2𝑛𝐹 2𝜌 2 ℏ 3 2 𝜌 2 ℏ 3 = 𝑛 3/2 𝐹 𝐸(𝐹) 3D: 𝐸 𝐹 ∝ 𝐹 Γ— 2 (spin) π‘Š 2 𝜌 2 ℏ 3 2D: 𝐸 𝐹 ∝ 𝐹 0 1D: 𝐸 𝐹 ∝ 1 𝐹 Some people call 𝐸(𝐹)/π‘Š density of states

  8. Theory of metals (cont.) π‘Š = 𝑏𝑐𝑑 𝑑 Δ𝑂 = π‘Š Ξ”π‘ž 𝑦 Ξ”π‘ž 𝑧 Ξ”π‘ž 𝑨 2πœŒβ„ 3 𝑐 𝑏 Fermi energy π‘ž 𝑨 π‘Š 4 3 3 πœŒπ‘ž 𝐺 3 2πœŒβ„ 3 βˆ™ 2 spin = π‘Š π‘ž 𝐺 π‘ž 𝐺 𝑂 = 3𝜌 2 ℏ 3 π‘ž 𝑧 π‘ž 𝑦 1/3 1/3 π‘ž 𝐺 = ℏ 3𝜌 2 𝑂 𝑙 𝐺 = π‘ž 𝐺 3𝜌 2 𝑂 ℏ = π‘Š π‘Š 2/3 2 2𝑛 = ℏ 2 𝐹 𝐺 = π‘ž 𝐺 3𝜌 2 𝑂 2𝑛 π‘Š

  9. Example 1 mass density 𝜍 = 8.96 g g atomic mass 𝑁 = 63.5 Copper (Cu) cm 3 mole 2/3 𝐹 𝐺 = ℏ 2 Find 𝐹 𝐺 3𝜌 2 𝑂 2𝑛 π‘Š 6.02 βˆ™ 10 23 𝑂 π‘Š = 1 βˆ™ atoms = 𝜍 𝑂 𝑁 = 8.96 βˆ™ 10 3 kg kg mole = 8.5 βˆ™ 10 28 1 1 mole 𝐡 m 3 m 3 63.5 βˆ™ 10 βˆ’3 m 3 2/3 𝐹 𝐺 = ℏ 2 = 1.05 βˆ™ 10 βˆ’34 2 3𝜌 2 𝑂 3 βˆ™ 3.14 2 βˆ™ 8.5 βˆ™ 10 28 2/3 = 2 βˆ— 9.1 βˆ™ 10 βˆ’31 2𝑛 π‘Š eV = 1.6 βˆ™ 10 βˆ’19 J = 1.1 βˆ™ 10 βˆ’18 J = 7.0 eV = 8.1 βˆ™ 10 4 K 𝑙 𝐢 = 1.38 βˆ™ 10 βˆ’23 J K π‘ˆ 𝐺 ≫ 300 K ! degenerate electron gas 2𝐹 𝐺 𝑛 = 1.6 βˆ™ 10 6 m Fermi velocity 𝑀 𝐺 = (very high but still nonrelativistic) s

  10. Example 2 1 𝑛 eff = 0.067 𝑛 0 10 18 GaAs (bulk), doping of cm 3 Find 𝐹 𝐺 2/3 𝐹 𝐺 = ℏ 2 1.05 βˆ™ 10 βˆ’34 2 3𝜌 2 𝑂 2 βˆ— 0.067 βˆ™ 9.1 βˆ™ 10 βˆ’31 3𝜌 2 βˆ™ 10 24 2/3 = = 2𝑛 π‘Š = 8.65 βˆ™ 10 βˆ’21 J = 54 meV = 630 K still > 300 K, behaves almost as a metal (degenerate semiconductor) However, if doping of 10 17 cm βˆ’3 , then only 140 K.

Recommend


More recommend