Weil representations over abelian varieties Luca Candelori Louisiana State University LSU, April 7th, 2015 Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 1 / 31
Weil representations They are finite-dimensional complex representations of the form ρ : Mp 2 g ( Z ) − → GL ( V ) Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 2 / 31
Weil representations They are finite-dimensional complex representations of the form ρ : Mp 2 g ( Z ) − → GL ( V ) 1 → {± 1 } → Mp 2 g ( Z ) → Sp 2 g ( Z ) → 1 Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 2 / 31
Weil representations They are finite-dimensional complex representations of the form ρ : Mp 2 g ( Z ) − → GL ( V ) 1 → {± 1 } → Mp 2 g ( Z ) → Sp 2 g ( Z ) → 1 They ‘encode’ the transformation laws of theta functions. Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 2 / 31
Example: one-variable theta functions of rank 1 lattices Let q = e 2 π i τ , τ ∈ h , m ∈ 2 Z > 0 . � m 2 n 2 θ m , 0 ( q ) = q n ∈ Z Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 3 / 31
Example: one-variable theta functions of rank 1 lattices Let q = e 2 π i τ , τ ∈ h , m ∈ 2 Z > 0 . � m 2 n 2 θ m , 0 ( q ) = q n ∈ Z � q n 2 / 2 m θ null , m ( q ) = n ≡ ν mod m n ∈ Z ν ∈ Z / m Z Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 3 / 31
Example: one-variable theta functions of rank 1 lattices �� a � � b φ 2 = c τ + d . Let γ = , φ ∈ Mp 2 ( Z ), c d Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 4 / 31
Example: one-variable theta functions of rank 1 lattices �� a � � b φ 2 = c τ + d . Let γ = , φ ∈ Mp 2 ( Z ), c d � a τ + b � θ null , m = φ ρ m ( γ ) θ null , m ( τ ) , c τ + d Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 4 / 31
Example: one-variable theta functions of rank 1 lattices �� a � � b φ 2 = c τ + d . Let γ = , φ ∈ Mp 2 ( Z ), c d � a τ + b � θ null , m = φ ρ m ( γ ) θ null , m ( τ ) , c τ + d where ρ m : Mp 2 ( Z ) → GL ( C [ Z / m Z ]) is the Weil representation attached to the quadratic form x �→ mx 2 / 2. Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 4 / 31
Example: one-variable theta functions of rank 1 lattices ρ m : Mp 2 ( Z ) → GL ( C [ Z / m Z ]) Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 5 / 31
Example: one-variable theta functions of rank 1 lattices ρ m : Mp 2 ( Z ) → GL ( C [ Z / m Z ]) �� 1 � � �� 0 � � , √ τ 1 − 1 T = , 1 , S = 0 1 1 0 Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 5 / 31
Example: one-variable theta functions of rank 1 lattices ρ m : Mp 2 ( Z ) → GL ( C [ Z / m Z ]) �� 1 � � �� 0 � � , √ τ 1 − 1 T = , 1 , S = 0 1 1 0 { δ ν } ⊆ C [ Z / m Z ] Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 5 / 31
Example: one-variable theta functions of rank 1 lattices ρ m : Mp 2 ( Z ) → GL ( C [ Z / m Z ]) �� 1 � � �� 0 � � , √ τ 1 − 1 T = , 1 , S = 0 1 1 0 { δ ν } ⊆ C [ Z / m Z ] ρ m ( T )( δ ν ) = e − π i ν 2 / m δ ν √ � i e 2 π i νµ/ m δ µ ρ m ( S )( δ ν ) = √ m µ ∈ Z / m Z Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 5 / 31
Example: one-variable theta functions of rank r lattices Let q = e 2 π i τ , τ ∈ h , ( L , Q ) a positive-definite rank r (even) lattice. � q Q ( λ ) θ L , 0 ( q ) = λ ∈ L Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 6 / 31
Example: one-variable theta functions of rank r lattices Let q = e 2 π i τ , τ ∈ h , ( L , Q ) a positive-definite rank r (even) lattice. � q Q ( λ ) θ L , 0 ( q ) = λ ∈ L �� � q Q ( λ + ν ) θ null , L ( q ) = λ ∈ L ν ∈ L ′ / L Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 6 / 31
Example: one-variable theta functions of rank r lattices �� a � � b φ 2 = c τ + d . Let γ = , φ ∈ Mp 2 ( Z ), c d Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 7 / 31
Example: one-variable theta functions of rank r lattices �� a � � b φ 2 = c τ + d . Let γ = , φ ∈ Mp 2 ( Z ), c d � a τ + b � = φ r ρ L ( γ ) θ null , L ( τ ) , θ null , L c τ + d Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 7 / 31
Example: one-variable theta functions of rank r lattices �� a � � b φ 2 = c τ + d . Let γ = , φ ∈ Mp 2 ( Z ), c d � a τ + b � = φ r ρ L ( γ ) θ null , L ( τ ) , θ null , L c τ + d where ρ L : Mp 2 ( Z ) → GL ( C [ L ′ / L ]) is the Weil representation attached to the lattice ( L , Q ). Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 7 / 31
Example: one-variable theta functions of rank r lattices ρ L : Mp 2 ( Z ) → GL ( C [ L ′ / L ]) Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 8 / 31
Example: one-variable theta functions of rank r lattices ρ L : Mp 2 ( Z ) → GL ( C [ L ′ / L ]) �� 1 � � �� 0 � � , √ τ 1 − 1 T = , 1 , S = 0 1 1 0 Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 8 / 31
Example: one-variable theta functions of rank r lattices ρ L : Mp 2 ( Z ) → GL ( C [ L ′ / L ]) �� 1 � � �� 0 � � , √ τ 1 − 1 T = , 1 , S = 0 1 1 0 { δ ν } ⊆ C [ L ′ / L ] Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 8 / 31
Example: one-variable theta functions of rank r lattices ρ L : Mp 2 ( Z ) → GL ( C [ L ′ / L ]) �� 1 � � �� 0 � � , √ τ 1 − 1 T = , 1 , S = 0 1 1 0 { δ ν } ⊆ C [ L ′ / L ] ρ m ( T )( δ ν ) = e − 2 π iQ ( ν ) δ ν √ r � i e 2 π iB ( ν,µ ) δ µ ρ m ( S )( δ ν ) = � | L ′ / L | µ ∈ L ′ / L Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 8 / 31
Further examples Let ( C g / Λ , H ) be a complex torus with a symmetric principal polarization. Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 9 / 31
Further examples Let ( C g / Λ , H ) be a complex torus with a symmetric principal polarization. Let � e 2 π i � λ, T λ � θ H , 0 = λ ∈ Z g where T ∈ h g . Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 9 / 31
Further examples Let ( C g / Λ , H ) be a complex torus with a symmetric principal polarization. Let � e 2 π i � λ, T λ � θ H , 0 = λ ∈ Z g where T ∈ h g . For k ∈ 2 Z > 0 , let � � � e 2 π i � λ + c 1 , T ( λ + c 1 ) � θ null , H k = λ ∈ Z g c 1 ∈ 1 k Z g / Z g Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 9 / 31
Geometric interpretations Andr´ e Weil, sur certains groupes d’op´ erateurs unitaires (1964): A force d’habitude, le fait que les s´ eries thˆ eta d´ efinissent des fonctions modulaires a presque cess´ e de nous ´ etonner. Mais l’apparition du groupe symplectique comme un deus ex machina dans les c´ el` ebres travaux de Siegel sur les formes quadratiques n’a rien perdu encore de son caract` ere myst´ erieux. Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 10 / 31
Geometric interpretations Andr´ e Weil, sur certains groupes d’op´ erateurs unitaires (1964): A force d’habitude, le fait que les s´ eries thˆ eta d´ efinissent des fonctions modulaires a presque cess´ e de nous ´ etonner. Mais l’apparition du groupe symplectique comme un deus ex machina dans les c´ el` ebres travaux de Siegel sur les formes quadratiques n’a rien perdu encore de son caract` ere myst´ erieux. Question Can we construct Weil representations geometrically ? Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 10 / 31
Heisenberg groups Let S be a noetherian scheme and let H → S be a commutative finite flat group scheme. Luca Candelori (Louisiana State University) Weil representations over abelian varieties LSU, April 7th, 2015 11 / 31
Recommend
More recommend