weak monadic second order theory of one successor ws1s
play

Weak monadic second-order theory of one successor (WS1S) - PowerPoint PPT Presentation

Weak monadic second-order theory of one successor (WS1S) Presentation for Seminar on Decision Procedures Susanne van den Elsen Universit at des Saarlandes January 25th, 2013 Susanne van den Elsen (UdS) WS1S January 25th, 2013 1 / 52


  1. Weak monadic second-order theory of one successor (WS1S) Presentation for Seminar on Decision Procedures Susanne van den Elsen Universit¨ at des Saarlandes January 25th, 2013 Susanne van den Elsen (UdS) WS1S January 25th, 2013 1 / 52

  2. Introduction Expressiveness and decidability expressiveness decidability/complexity Susanne van den Elsen (UdS) WS1S January 25th, 2013 2 / 52

  3. Introduction Expressiveness and decidability expressiveness Boolean Logic NP- complete decidability/complexity Susanne van den Elsen (UdS) WS1S January 25th, 2013 2 / 52

  4. Introduction Expressiveness and decidability expressiveness Quantified Boolean Logic Boolean Logic NP- PSPACE- complete complete decidability/complexity Susanne van den Elsen (UdS) WS1S January 25th, 2013 2 / 52

  5. Introduction Expressiveness and decidability expressiveness Second Order Logic ∃ R . ∀ x . R ( x , x ) First Order Logic ∀ x . P ( x ) Quantified Boolean Logic Boolean Logic undecidable! NP- PSPACE- complete complete decidability/complexity Susanne van den Elsen (UdS) WS1S January 25th, 2013 2 / 52

  6. Introduction Expressiveness and decidability expressiveness Second Order Logic ∃ R . ∀ x . R ( x , x ) First Order Logic ∀ x . P ( x ) First-order theories Quantified Boolean Logic Boolean Logic undecidable! NP- PSPACE- complete complete decidability/complexity Susanne van den Elsen (UdS) WS1S January 25th, 2013 2 / 52

  7. Introduction Monadic second-order logic (MSO) - Monadic second-order logic (MSO): fragment of second-order logic only quantification over sets - Weak monadic second-order logic (WMSO): fragment of MSO only quantification over finite sets - WS1S: WMSO of one successor Susanne van den Elsen (UdS) WS1S January 25th, 2013 3 / 52

  8. Introduction Monadic second-order logic (MSO) - Monadic second-order logic (MSO): fragment of second-order logic only quantification over sets - Weak monadic second-order logic (WMSO): fragment of MSO only quantification over finite sets - WS1S: WMSO of one successor Susanne van den Elsen (UdS) WS1S January 25th, 2013 3 / 52

  9. Introduction Monadic second-order logic (MSO) - Monadic second-order logic (MSO): fragment of second-order logic only quantification over sets - Weak monadic second-order logic (WMSO): fragment of MSO only quantification over finite sets - WS1S: WMSO of one successor Susanne van den Elsen (UdS) WS1S January 25th, 2013 3 / 52

  10. Introduction Expressiveness and decidability expressiveness Second Order Logic ∃ R . ∀ x . R ( x , x ) First Order Logic ∀ x . P ( x ) REG WS1S Quantified Boolean Logic Boolean Logic non-elementary NP- PSPACE- undecidable! 2 2 . . . 2 n � complete complete O ( n ) decidability/complexity Susanne van den Elsen (UdS) WS1S January 25th, 2013 4 / 52

  11. Introduction Application of WS1S - WS1S implemented (e.g. in MONA, MOSEL, . . . ) - Express properties of programs manipulating linked datastructures (e.g. lists) node1 node2 .next .next .next .next .next .next root - Express that node2 is reachable from node1 : � node1 , node2 � ∈ {� x , y � | y = x . next } ∗ Reachable ( node1 , node2 ) := Closed ( S , next ) := ∀ x ∀ y ( x ∈ S ∧ y = x . next → y ∈ S ) � node1 , node2 � ∈ next ∗ := ∀ S . ( node1 ∈ S ∧ Closed ( S , next ) → node2 ∈ S ) Susanne van den Elsen (UdS) WS1S January 25th, 2013 5 / 52

  12. Introduction Application of WS1S - WS1S implemented (e.g. in MONA, MOSEL, . . . ) - Express properties of programs manipulating linked datastructures (e.g. lists) node1 node2 .next .next .next .next .next .next root - Express that node2 is reachable from node1 : � node1 , node2 � ∈ {� x , y � | y = x . next } ∗ Reachable ( node1 , node2 ) := Closed ( S , next ) := ∀ x ∀ y ( x ∈ S ∧ y = x . next → y ∈ S ) � node1 , node2 � ∈ next ∗ := ∀ S . ( node1 ∈ S ∧ Closed ( S , next ) → node2 ∈ S ) Susanne van den Elsen (UdS) WS1S January 25th, 2013 5 / 52

  13. Introduction Application of WS1S - WS1S implemented (e.g. in MONA, MOSEL, . . . ) - Express properties of programs manipulating linked datastructures (e.g. lists) node1 node2 .next .next .next .next .next .next root - Express that node2 is reachable from node1 : � node1 , node2 � ∈ {� x , y � | y = x . next } ∗ Reachable ( node1 , node2 ) := Closed ( S , next ) := ∀ x ∀ y ( x ∈ S ∧ y = x . next → y ∈ S ) � node1 , node2 � ∈ next ∗ := ∀ S . ( node1 ∈ S ∧ Closed ( S , next ) → node2 ∈ S ) Susanne van den Elsen (UdS) WS1S January 25th, 2013 5 / 52

  14. Introduction Application of WS1S y y x x x (a) x and y (b) x is acyclic (c) no garbage are separate Figure: Properties that can be expressed in terms of reachability. Susanne van den Elsen (UdS) WS1S January 25th, 2013 6 / 52

  15. Introduction Overview of this presentation WS1S Susanne van den Elsen (UdS) WS1S January 25th, 2013 7 / 52

  16. Introduction Overview of this presentation WS1S Syntax Semantics Susanne van den Elsen (UdS) WS1S January 25th, 2013 7 / 52

  17. Introduction Overview of this presentation Regular languages WS1S Syntax Semantics Susanne van den Elsen (UdS) WS1S January 25th, 2013 7 / 52

  18. Introduction Overview of this presentation Regular languages WS1S Finite automata Syntax Semantics Susanne van den Elsen (UdS) WS1S January 25th, 2013 7 / 52

  19. Introduction Overview of this presentation Regular languages WS1S Finite automata Syntax Semantics WS1S on words Susanne van den Elsen (UdS) WS1S January 25th, 2013 7 / 52

  20. Introduction Overview of this presentation Regular languages WS1S Finite automata Syntax Decision procedure Semantics WS1S on words Susanne van den Elsen (UdS) WS1S January 25th, 2013 7 / 52

  21. Introduction Overview of this presentation Regular languages WS1S Finite automata Syntax Decision procedure Semantics Complexity WS1S on words 2 2 . . . 2 n � O ( n ) Susanne van den Elsen (UdS) WS1S January 25th, 2013 7 / 52

  22. Weak monadic second-order theory of one successor Section 2 Weak monadic second-order theory of one successor Susanne van den Elsen (UdS) WS1S January 25th, 2013 8 / 52

  23. Weak monadic second-order theory of one successor Syntax Syntax Syntax (S1S) First order variable set V 1 = { x 1 , x 2 , . . . } Second-order variable set V 2 = { X 1 , X 2 , . . . } Terms t: t ::= 0 | x , for x ∈ V 1 Formulas φ : φ ::= S ( t , t ) | t ∈ X | ¬ φ | φ 1 ∧ φ 2 | ∃ x .φ | ∃ X .φ, for x ∈ V 1 and X ∈ V 2 Syntax (WS1S) Same as S1S, but only quantification over finite sets. Susanne van den Elsen (UdS) WS1S January 25th, 2013 9 / 52

  24. Weak monadic second-order theory of one successor Semantics Semantics On structure � ω, S , < � Interpretation σ = � σ 1 , σ 2 � , where σ 1 : V 1 → N and σ 2 : V 2 → N ∈ 2 N , with N is finite. Susanne van den Elsen (UdS) WS1S January 25th, 2013 10 / 52

  25. Weak monadic second-order theory of one successor Semantics Semantics Semantics Semantics of terms: [0] σ 1 = 0 ; [ x ] σ 1 = σ 1 ( x ) ; Satisfiability: σ | = t ∈ X ⇐ ⇒ σ ( t ) ∈ σ ( X ) ; = S ( t , t ′ ) ⇐ ⇒ σ ( t ) + 1 = σ ( t ′ ) ; σ | σ | = ¬ φ ⇐ ⇒ σ �| = φ ; σ | = φ 1 ∧ φ 2 ⇐ ⇒ σ | = φ 1 and σ | = φ 2 ; σ | = ∃ x .φ ⇐ ⇒ σ [ n / x ] | = φ for some n ∈ N ; σ | = ∃ X .φ ⇐ ⇒ σ [ N / X ] | = φ for some finite N ∈ 2 N . Validity: | = φ ⇐ ⇒ σ | = φ , for all interpretations σ Susanne van den Elsen (UdS) WS1S January 25th, 2013 11 / 52

  26. Weak monadic second-order theory of one successor Semantics Syntactic sugar Example ∀ x ∀ y ( x ∈ Z ∧ R ( x , y ) → y ∈ Z ) Closed ( Z , R ) := � z 1 , z 2 � ∈ R ∗ := ∀ Z . ( z 1 ∈ Z ∧ Closed ( Z , R ) → z 2 ∈ Z ) x ≤ y := x < y := first ( x ) := last ( x ) := X ⊆ Y := X = Y := X = ∅ := Sing ( X ) := Succ ( X , Y ) := ; Susanne van den Elsen (UdS) WS1S January 25th, 2013 12 / 52

  27. Weak monadic second-order theory of one successor Semantics Syntactic sugar Example ∀ x ∀ y ( x ∈ Z ∧ R ( x , y ) → y ∈ Z ) Closed ( Z , R ) := � z 1 , z 2 � ∈ R ∗ := ∀ Z . ( z 1 ∈ Z ∧ Closed ( Z , R ) → z 2 ∈ Z ) ∀ X . ( y ∈ X ∧ ∀ z . ∀ z ′ ( z ∈ X ∧ S ( z ′ , z ) → z ′ ∈ X ) → X ( x )) x ≤ y := � x , y � ∈ S ∗ i.e. x < y := first ( x ) := last ( x ) := X ⊆ Y := X = Y := X = ∅ := Sing ( X ) := Succ ( X , Y ) := ; Susanne van den Elsen (UdS) WS1S January 25th, 2013 12 / 52

  28. Weak monadic second-order theory of one successor Semantics Syntactic sugar Example ∀ x ∀ y ( x ∈ Z ∧ R ( x , y ) → y ∈ Z ) Closed ( Z , R ) := � z 1 , z 2 � ∈ R ∗ := ∀ Z . ( z 1 ∈ Z ∧ Closed ( Z , R ) → z 2 ∈ Z ) ∀ X . ( y ∈ X ∧ ∀ z . ∀ z ′ ( z ∈ X ∧ S ( z ′ , z ) → z ′ ∈ X ) → X ( x )) x ≤ y := � x , y � ∈ S ∗ i.e. x < y := x ≤ y ∧ ¬ y ≤ x first ( x ) := last ( x ) := X ⊆ Y := X = Y := X = ∅ := Sing ( X ) := Succ ( X , Y ) := ; Susanne van den Elsen (UdS) WS1S January 25th, 2013 12 / 52

Recommend


More recommend