( x + pA + qB, y + qA − pB ) for all A, B ∈ Z 16 th Q ( s ) � E � = Q ( s ) � e 1 , . . . , e k � We have Every element of Q ( s ) International Symposium δ i � x � = 0 y i = � j y ij e j for all y i ∈ Y on Graph can be written as p/q , δ i y = 0 Drawing Moreover from what we wrote above we have: where p, q ∈ O Q ( s ) . 0 ≤ l ≤ h x ijl s l and y ij = � 0 ≤ l ≤ h y ijl s l x ij = � � δ i x = pA i + qB i � = 0 GCD is 1. ∆ x = � i,j ∆ x ij e j rizontal, ∆ y i = sa i − b i = 0 , δ i y = qA i − pB i = 0 x ij = a ij /b ij Connected D x = { d x ∈ R : d x = | x ( v lft ) − x ( v ) | , ∀ v ∈ V } a i + sb i = a i + s 2 a i = (1 + s 2 ) a i . y ij = c ij /d ij Rectilinear Graphs on for all odd values of i , 0 < i < n and Point Sets We consider the following cases: ertical, then ∆ x i = a i + sb i = 0 , q ( p 2 + q 2 ) y = A i δ i 1. [ Q ( s ) : Q ] = 1 , s is rational. � δ i sa i − b i = − s 2 b i − b i = − (1+ s 2 ) b i . x = pA i + qB i = 0 δ i y = qA i − pB i � = 0 2. [ Q ( s ) : Q ] < ∞ , s is algebraic over Q . x i , y i ∈ O Q ( s ) � E � 3. [ Q ( s ) : Q ] = ∞ , s is transcendental over Q . 0 ≤ l ≤ h w l s l Maarten L¨ offler � for all even values of i , 0 < i < n . Utrecht University w = 0 ≤ l ≤ h x ijl s l Elena Mumford In total we move from v i to v i +1 x ij = � 0 ≤ l ′≤ h ′ w ′ l ′ s l ′ Technical University Eindhoven over a distance ( a i + sb i , sa i − b i ) � where a i , b i ∈ Z � E � . 0 ≤ l ≤ h y ijl s l the Netherlands y ij = � 1-1
( x + pA + qB, y + qA − pB ) for all A, B ∈ Z 16 th Q ( s ) � E � = Q ( s ) � e 1 , . . . , e k � We have Every element of Q ( s ) International Symposium δ i � x � = 0 y i = � j y ij e j for all y i ∈ Y on Graph can be written as p/q , δ i y = 0 Drawing Moreover from what we wrote above we have: where p, q ∈ O Q ( s ) . 0 ≤ l ≤ h x ijl s l and y ij = � 0 ≤ l ≤ h y ijl s l x ij = � � δ i x = pA i + qB i � = 0 GCD is 1. ∆ x = � i,j ∆ x ij e j rizontal, ∆ y i = sa i − b i = 0 , δ i y = qA i − pB i = 0 x ij = a ij /b ij Connected D x = { d x ∈ R : d x = | x ( v lft ) − x ( v ) | , ∀ v ∈ V } a i + sb i = a i + s 2 a i = (1 + s 2 ) a i . y ij = c ij /d ij Rectilinear Graphs on for all odd values of i , 0 < i < n and Point Sets We consider the following cases: ertical, then ∆ x i = a i + sb i = 0 , q ( p 2 + q 2 ) y = A i δ i 1. [ Q ( s ) : Q ] = 1 , s is rational. � δ i sa i − b i = − s 2 b i − b i = − (1+ s 2 ) b i . x = pA i + qB i = 0 δ i y = qA i − pB i � = 0 2. [ Q ( s ) : Q ] < ∞ , s is algebraic over Q . x i , y i ∈ O Q ( s ) � E � 3. [ Q ( s ) : Q ] = ∞ , s is transcendental over Q . 0 ≤ l ≤ h w l s l Maarten L¨ offler � for all even values of i , 0 < i < n . Utrecht University w = 0 ≤ l ≤ h x ijl s l Elena Mumford In total we move from v i to v i +1 x ij = � 0 ≤ l ′≤ h ′ w ′ l ′ s l ′ Technical University Eindhoven over a distance ( a i + sb i , sa i − b i ) � where a i , b i ∈ Z � E � . 0 ≤ l ≤ h y ijl s l the Netherlands y ij = � 1-2
2-1
2-2
3-1
3-2
3-3
Question: How many orientations can a point set have, such that the maximal axis-parallel graph is connected? 4-1
Question: How many orientations can a point set have, such that the maximal axis-parallel graph is connected? [Therese Biedl, 2007] 4-2
Let’s look at an example point set in all possible orientation. 5-1
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
7-1
Answer: One. 8-1
Answer: One. (up to trivial rotations) 8-2
Start simple: two dimensions, integer coordinates, rotation over 45 ◦ . 9-1
10-1
10-2
11-1
11-2
12-1
12-2
12-3
13-1
13-2
14-1
14-2
14-3
14-4
15-1
15-2
15-3
That’s good, but what if my coordinates are not integers? 16-1
17-1
17-2
18-1
18-2
18-3
18-4
18-5
19-1
19-2
19-3
19-4
20-1
20-2
What about other slopes than 45 ◦ ? 21-1
22-1
22-2
23-1
23-2
24-1
24-2
24-3
24-4
So, what happens in higher dimensions? 25-1
26-1
26-2
26-3
26-4
26-5
26-6
26-7
26-8
26-9
26-10
26-11
26-12
Any Questions... ? 27-1
27-2 Any Questions... ?
27-3 Any Questions... ?
Recommend
More recommend