w
play

w = 0 l h x ijl s l Elena Mumford In total we move from v i to v i - PowerPoint PPT Presentation

( x + pA + qB, y + qA pB ) for all A, B Z 16 th Q ( s ) E = Q ( s ) e 1 , . . . , e k We have Every element of Q ( s ) International Symposium i x = 0 y i = j y ij e j for all y i Y on Graph can be


  1. ( x + pA + qB, y + qA − pB ) for all A, B ∈ Z 16 th Q ( s ) � E � = Q ( s ) � e 1 , . . . , e k � We have Every element of Q ( s ) International Symposium δ i � x � = 0 y i = � j y ij e j for all y i ∈ Y on Graph can be written as p/q , δ i y = 0 Drawing Moreover from what we wrote above we have: where p, q ∈ O Q ( s ) . 0 ≤ l ≤ h x ijl s l and y ij = � 0 ≤ l ≤ h y ijl s l x ij = � � δ i x = pA i + qB i � = 0 GCD is 1. ∆ x = � i,j ∆ x ij e j rizontal, ∆ y i = sa i − b i = 0 , δ i y = qA i − pB i = 0 x ij = a ij /b ij Connected D x = { d x ∈ R : d x = | x ( v lft ) − x ( v ) | , ∀ v ∈ V } a i + sb i = a i + s 2 a i = (1 + s 2 ) a i . y ij = c ij /d ij Rectilinear Graphs on for all odd values of i , 0 < i < n and Point Sets We consider the following cases: ertical, then ∆ x i = a i + sb i = 0 , q ( p 2 + q 2 ) y = A i δ i 1. [ Q ( s ) : Q ] = 1 , s is rational. � δ i sa i − b i = − s 2 b i − b i = − (1+ s 2 ) b i . x = pA i + qB i = 0 δ i y = qA i − pB i � = 0 2. [ Q ( s ) : Q ] < ∞ , s is algebraic over Q . x i , y i ∈ O Q ( s ) � E � 3. [ Q ( s ) : Q ] = ∞ , s is transcendental over Q . 0 ≤ l ≤ h w l s l Maarten L¨ offler � for all even values of i , 0 < i < n . Utrecht University w = 0 ≤ l ≤ h x ijl s l Elena Mumford In total we move from v i to v i +1 x ij = � 0 ≤ l ′≤ h ′ w ′ l ′ s l ′ Technical University Eindhoven over a distance ( a i + sb i , sa i − b i ) � where a i , b i ∈ Z � E � . 0 ≤ l ≤ h y ijl s l the Netherlands y ij = � 1-1

  2. ( x + pA + qB, y + qA − pB ) for all A, B ∈ Z 16 th Q ( s ) � E � = Q ( s ) � e 1 , . . . , e k � We have Every element of Q ( s ) International Symposium δ i � x � = 0 y i = � j y ij e j for all y i ∈ Y on Graph can be written as p/q , δ i y = 0 Drawing Moreover from what we wrote above we have: where p, q ∈ O Q ( s ) . 0 ≤ l ≤ h x ijl s l and y ij = � 0 ≤ l ≤ h y ijl s l x ij = � � δ i x = pA i + qB i � = 0 GCD is 1. ∆ x = � i,j ∆ x ij e j rizontal, ∆ y i = sa i − b i = 0 , δ i y = qA i − pB i = 0 x ij = a ij /b ij Connected D x = { d x ∈ R : d x = | x ( v lft ) − x ( v ) | , ∀ v ∈ V } a i + sb i = a i + s 2 a i = (1 + s 2 ) a i . y ij = c ij /d ij Rectilinear Graphs on for all odd values of i , 0 < i < n and Point Sets We consider the following cases: ertical, then ∆ x i = a i + sb i = 0 , q ( p 2 + q 2 ) y = A i δ i 1. [ Q ( s ) : Q ] = 1 , s is rational. � δ i sa i − b i = − s 2 b i − b i = − (1+ s 2 ) b i . x = pA i + qB i = 0 δ i y = qA i − pB i � = 0 2. [ Q ( s ) : Q ] < ∞ , s is algebraic over Q . x i , y i ∈ O Q ( s ) � E � 3. [ Q ( s ) : Q ] = ∞ , s is transcendental over Q . 0 ≤ l ≤ h w l s l Maarten L¨ offler � for all even values of i , 0 < i < n . Utrecht University w = 0 ≤ l ≤ h x ijl s l Elena Mumford In total we move from v i to v i +1 x ij = � 0 ≤ l ′≤ h ′ w ′ l ′ s l ′ Technical University Eindhoven over a distance ( a i + sb i , sa i − b i ) � where a i , b i ∈ Z � E � . 0 ≤ l ≤ h y ijl s l the Netherlands y ij = � 1-2

  3. 2-1

  4. 2-2

  5. 3-1

  6. 3-2

  7. 3-3

  8. Question: How many orientations can a point set have, such that the maximal axis-parallel graph is connected? 4-1

  9. Question: How many orientations can a point set have, such that the maximal axis-parallel graph is connected? [Therese Biedl, 2007] 4-2

  10. Let’s look at an example point set in all possible orientation. 5-1

  11. 6-1

  12. 6-2

  13. 6-3

  14. 6-4

  15. 6-5

  16. 6-6

  17. 6-7

  18. 6-8

  19. 6-9

  20. 6-10

  21. 6-11

  22. 6-12

  23. 6-13

  24. 6-14

  25. 6-15

  26. 6-16

  27. 6-17

  28. 6-18

  29. 6-19

  30. 6-20

  31. 6-21

  32. 6-22

  33. 6-23

  34. 6-24

  35. 6-25

  36. 6-26

  37. 7-1

  38. Answer: One. 8-1

  39. Answer: One. (up to trivial rotations) 8-2

  40. Start simple: two dimensions, integer coordinates, rotation over 45 ◦ . 9-1

  41. 10-1

  42. 10-2

  43. 11-1

  44. 11-2

  45. 12-1

  46. 12-2

  47. 12-3

  48. 13-1

  49. 13-2

  50. 14-1

  51. 14-2

  52. 14-3

  53. 14-4

  54. 15-1

  55. 15-2

  56. 15-3

  57. That’s good, but what if my coordinates are not integers? 16-1

  58. 17-1

  59. 17-2

  60. 18-1

  61. 18-2

  62. 18-3

  63. 18-4

  64. 18-5

  65. 19-1

  66. 19-2

  67. 19-3

  68. 19-4

  69. 20-1

  70. 20-2

  71. What about other slopes than 45 ◦ ? 21-1

  72. 22-1

  73. 22-2

  74. 23-1

  75. 23-2

  76. 24-1

  77. 24-2

  78. 24-3

  79. 24-4

  80. So, what happens in higher dimensions? 25-1

  81. 26-1

  82. 26-2

  83. 26-3

  84. 26-4

  85. 26-5

  86. 26-6

  87. 26-7

  88. 26-8

  89. 26-9

  90. 26-10

  91. 26-11

  92. 26-12

  93. Any Questions... ? 27-1

  94. 27-2 Any Questions... ?

  95. 27-3 Any Questions... ?

Recommend


More recommend