vgb vt o vsb vdb log companding advanced nut ut ut i d i
play

! VGB VT O VSB VDB Log-Companding Advanced nUt Ut Ut I D = I - PowerPoint PPT Presentation

ISCAS Monday 29th May 2000 VLSI CMOS Low-Voltage Log-Companding Filters Francisco Serra-Graells Paco.Serra@cnm.es Abstract Introduction Principle of Operation and CMOS Generalization Basic Building Blocks Design Methodology


  1. ISCAS Monday 29th May 2000 VLSI CMOS Low-Voltage Log-Companding Filters Francisco Serra-Graells Paco.Serra@cnm.es Abstract • Introduction • Principle of Operation and CMOS Generalization • Basic Building Blocks • Design Methodology • Examples • Conclusions Centro Nacional de Microelectr´ onica-IMB, Campus UAB, 08193 Bellaterra, Spain

  2. Introduction 1 ◮ Instantaneous Companding Processing ◮ Log-Companding law: y = F ( x ) = ex Externally�Linear�Signal�Processing ◮ Previous work mainly in bipolar [1] vs MOS: • Asymmetric I / V curves y in x in Non-linear x out y out Reduced ex current dynamic range -1 Signal�Processing F • F DR y DR DR DR y < • Poor output conductance x y Compression Expansion • Physical mismatching y ≡ Current x ≡ Voltage • Flicker noise ◮ Few CMOS realizations [2] [3] [4] [5] High-Frequency & Low-Voltage Applications ◮ New Proposal ◮ EKV model [6] in weak inversion: VS,DB > VGB − VT O Very�Low-Voltage�Applications n ! VGB − VT O − VSB − VDB Log-Companding Advanced nUt Ut Ut I D = I S e − e e Theory MOSFET�Modeling New�Analog in�Subthreshold Circuit�Techniques D G S B I S = 2 nβU 2 t y=F(x) Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

  3. Principle of Operation 2 ◮ Basic Integrator: d y out = y in . ◮ CMOS Translinear Loops? d t τ ◮ Chain Rule as proposed by [7]: d y out = d y out d x out d x cap d x cap I Di = y out I Dj d t d x out d x cap d t d t M i V GBi CW M j ◮ Product of currents as defined by [8]: V GBj CCW y out C d x cap = C y tun . CW = y tun y in V SBi | {z d t } τ V SBj X X ◮ Multipliers � the Translinear Principle [9]: ( V GB − V SB ) i = ( V GB − V SB ) j y out y cap = y tun y in CCW CW Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

  4. CMOS Generalization 3 ◮ Cancellation of signal dependent terms: X X I Dj n i U t ln I Di + V T Oi + ( n i − 1) V SBi } = n j U t ln + V T Oj + ( n j − 1) V SBj | {z | {z } I Si I Sj CCW CW X X + (1 − 1 I Dj V T Oj + (1 − 1 U t ln I Di + V T Oi ) V GBi = U t ln + ) V GBj I Si n i n i I Sj n j n j | {z } | {z } CCW CW ◮ Gate/Source Driven (G/SD) matched pairs ◮ No GD/SD mixing! GD SD I D 1 I D 2 V 1 M1 M2 NMOS I D 3 I D 4 M3 M4 V 3 V 2 PMOS V 4 ! n 3 ! n 4 ID 1 ID 3 = ID 2 ID 4 IS IS IS IS Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

  5. Basic Building Blocks 4 ◮ Rewriting the product for systematic synthesis: ◮ State-Space matrix description: 8 > < C d x out d I = y tun e xin − xout d t = AI + BIin > d t : Iout = CI + DIin g mAij V j ◮ Proposed CMOS Log-Companding functions: V i 8 > > VT O + nVref > > V > − nUt GD < nUt I capi ISe e I = F ( V ) = > C i > Vref − VT O > > − V > SD : nUt Ut ISe e 8 > X Vj − Vi X Vinj − Vi > N M > > > nUt nUt > + I tunAij e I tunBij e GD > < X X N M d I i d V i j =1 j =1 d t = A ij I j + B ij I inj ⇒ C i d t = > > X Vi − Vj X Vi − Vinj > N M > j =1 j =1 > > Ut Ut − I tunAij e − SD I tunBij e > : j =1 j =1 Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

  6. ◮ Low-Voltage Saturated CMOS cells: Francisco Serra-Graells Basic Building Blocks GD SD I tunAij ( Bi ) nU t C i A ij ( B i ) U t C i A ij ( B i ) I in I in + - + - I bias ORA ORA I bias Compressor V in V ref V ref V in VLSI CMOS Low-Voltage Log-Companding Filters I tunAij(Bi) I tunAij(Bi) V j(in) A ij ( B i ) > 0 V i V j(in) V i VF C i C i j I tunAij(Bi) j j I tunAij(Bi) j V j(in) V i A ij ( B i ) < 0 V j(in) V i VF C i C i V i V i A ii I tunAii C i I tunAii C i j j C j I bias j C j I bias j ORA ORA + - I out + - Expander I out V ref V out V ref V out ISCAS 2000/05/29 5

  7. Basic Building Blocks 6 ◮ Low-Voltage Non-Saturated CMOS cells: ◮ Same Log-Companding F as Saturated SD case, but for A and B : 0 1 Vi − Vj − Vj − Vi Vi X X X N N N B C d Vi Ut Ut Ut Ut @ e A d t = − ItunAije + · · · ≡ − e − ItunAij + . . . Ci ItunAije j =1 j =1 j =1 | {z } j � = i ◮ Signal Boundaries: | Aii | UtCi Ituni 2 I tuni I/I bias 1 1 Aij ( Bi ) > 0 V k S Aik CI 0 Aik < 0 V j V i VF S Aij 5 99% C i I DCi V in S Bi ¢ V/U t 3 90% � � � � 75% � Aij ( Bi ) � � � SAij ( Bi ) 0 50% � � Aii -1 P N Time j =1 Aij + Bi IDCi Ituni | Aii | Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

  8. Basic Building Blocks 7 ◮ Low-Voltage Auxiliary Circuitry: GD SD I in I out X Y Compressor CI CI I in I bias V in V out I in I bias I bias I bias M4 M5 M6 I in I out V ref V in Y V in VF W W V in V out M1 M2 M3 V ref + V out I in X (a) (b) Expander I out j j C I bias I out j j C I bias j j I bias V out V ref I bias V ref V out ◮ Comparison: • Saturated GD � area saving • Saturated SD � technology independence & relaxed matching • Non-Saturated SD � idem Saturated SD & low DC errors Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

  9. Design Methodology 8 ◮ Matrix Procedure A 0 , B 0 and C 0 ( D 0 ≡ 0 ): ◮ Circuit reductions: GD SD 1 Normalize C 0 to share comp/expanders, and Compressor-Expander Yout ( DC ) ≡ Y ( DC ) : I in I in I max I max I bias C 0 M − 1 . - + + - ORA ORA ORA = I ORA + - + - norm I out I out V in 1 j C j j j j 1 C j 1 1 1 V out V in V out 1/ K 1/ K 2 Achieve Y ( DC ) ≡ Yin ( DC ) keeping previous C 1 : I tunAij I tunAij A(B) A ik 1 1 V i A ik A ij C 1 = MopC 1 1 1 A ij V i VF V k V j C i V j C i V k 1 order = − MopA − 1 ¯ B 1¯ 1 inputs 1 I tuni 3 If � ∃ Mop , then use an extra dummy input: 1 1 inputs + ¯ 0 order = A 1¯ ¯ 1 order + B 1¯ V k Bdummy S Aik C I h i V j V i VF B 1 | ¯ S Aij B 2 = Bdummy C i I DCi V in S Bi Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

  10. Design Methodology 9 ◮ Synthesis example: SD Saturated 2nd-Order Low-Pass I max I out 2 I tuno ³ 2 3 2 3 V out = V 1 6 7 6 7 − 2 ζwo − wo 0 ← 6 7 6 7 I in I tuno / 2 ³ I tuno / 2 ³ A = 4 5 B = 4 5 I max - + 0 − wo wo ORA 2 I tuno ³ � � � � V in VF VF V 2 C = 1 0 D = 0 C 2 C 1 I out 2 I tuno ³ 2 3 2 3 6 − 2 ζwo 2 ζwo 7 6 0 7 6 7 6 7 Anew = Bnew = 4 5 4 5 − wo wo V out = V 1 0 2 ζ 2 ζ I in I tuno / 2 ³ I max � � � � + - ORA Cnew = 1 0 Dnew = 0 2 I tuno ³ V in VF VF V 2 C 2 C 1 Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

  11. Design Examples 10 20 ◮ Common specs: 0 • Audio Applications (e.g. Hearing Aids) Current�Gain�[dB] • VDDmin = 1 . 0 V -20 • ( VT ON + | VT OP | ) max = 1 . 25 V -40 • IF ull − Scale = 4 µ A pp • T HD < 1% at 90% Full-Scale -60 • DR = 60dB to 70dB • 10pF < C < 100pF -80 0.01 0.1 1 4 • 1.2 µ m VLSI CMOS 2M 2P Frequency�[KHz] 1.5 1 ◮ Saturated SD 2nd-Order High-Pass: Output�Current�[ A] 0.5 ¹ 0 -0.5 -1 -1.5 0 0.5 1 1.5 2 Time�[ms] 100 m ¹ Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

  12. Design Examples 11 ◮ Saturated GD 2nd-Order Band/Low-Pass: 0 I out 1 I out 2 I bias Q I tuno I bias [dB] -20 I in V out = V V out = V I out / 1 1 2 2 -40 I in I bias I max I bias I tuno /Q I tuno /Q Q I tuno I tuno /Q -60 + - - + ORA ORA 0 V bias V in C 1 C 2 [dB] -20 I tuno /Q I in I out / -40 I out 1 I out 2 -60 0.1 1 10 100 1000 0.1 1 10 100 1000 Frequency�[KHz] Frequency�[KHz] V out = V V out = V 1 1 2 2 I in I bias I max I bias I tuno /Q Q I tuno + + - - ORA ORA V in C 1 C 2 V bias I tuno /Q Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

  13. Design Examples 12 ◮ Non-Saturated SD 3rd-Order Low-Pass: 0 f - 3/6/9dB = 3.5kHz -20 I out /I in [dB] I in I out I max -40 I tuno I tuno I tuno + - ORA -60 VF VF VF C C C -80 0.1 1 10 100 Frequency�[kHz] I in =�90%�Full-Scale�@�0.5/1/2/4kHz 2 THD < 0.2% 1 I out [ A] ¹ 0 -1 f - 3dB = 1kHz -2 0 1 2 3 4 Time�[ms] Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

  14. Conclusions 13 ◮ The MOSFET is suitable for Log-Companding Filtering ◮ Different types of CMOS Basic Building Blocks exist ◮ Importance of the design methodology to optimize filter area ◮ Compatibility with very Low-Voltage applications (e.g. Hearing Aids) Francisco Serra-Graells VLSI CMOS Low-Voltage Log-Companding Filters ISCAS 2000/05/29

Recommend


More recommend