using lie algebras to parametrize certain types of
play

Using Lie algebras to parametrize certain types of algebraic - PowerPoint PPT Presentation

Using Lie algebras to parametrize certain types of algebraic varieties II Willem A. de Graaf, University of Trento, Italy Janka P lnikov a, RICAM Linz / RISC Linz, Austria Josef Schicho, RICAM Linz, Austria Lie Algebras, their


  1. Using Lie algebras to parametrize certain types of algebraic varieties II Willem A. de Graaf, University of Trento, Italy Janka P´ ılnikov´ a, RICAM Linz / RISC Linz, Austria Josef Schicho, RICAM Linz, Austria Lie Algebras, their Classification and Applications University of Trento 25 - 27 July 2005 July 25, 2005 Page 1

  2. Outline (i) Surfaces in algebraic geometry, parametrizing surfaces (ii) The Lie algebra of a surface. (iii) Using the method to parametrize non-trivial cases of Del Pezzo surfaces of degree 8: – “non-split” case: the unit sphere as a twist of P 1 × P 1 – “non-semisimple” case: the blowup of P 2 July 25, 2005 Page 2

  3. Surfaces in projective space The n -dimensional projective space: P n = { ( t 0 : · · · : t n ) | ( t 0 : · · · : t n ) � = (0 : · · · : 0) } . Let f 1 , . . . , f k ∈ Q [ x 0 , . . . , x n ] are forms over Q . Projective variety S is the set of solutions to f 1 , . . . , f k , i.e. all points in P n such that f 1 ( a 0 , . . . , a n ) = · · · = f k ( a 0 , . . . , a n ) = 0 . Let S be a surface: dim( S ) = 2 . Finding a rational parametrization over Q means finding all rational solutions to the system. We need a map ϕ : P 2 ( or P 1 × P 1 ) → S ⊂ P n subject to the following: July 25, 2005 Page 3

  4. Parametrization of a surface S ⊂ P n a surface. ϕ : P 2 ( or P 1 × P 1 ) → P n is a rational parametrization of S over Q , if (i) ϕ = ( p 0 : · · · : p n ) and p 0 , . . . p n ∈ Q [ t 0 , t 1 , t 2 ] are forms of the same degree, (ii) ϕ ( p ) ∈ S for all p from the domain of ϕ , (iii) the image of ϕ is a dense subset of S . Preprocessing: By embeddings of S we reduce to few basic cases: – tubular surfaces – some trivial cases – Del Pezzo surfaces of degree 5, 6, 7, 8, 9. July 25, 2005 Page 4

  5. The Lie algebra of a surface For a given surface S ⊂ P n , G ( S, Q ) := { g ∈ GL n +1 ( Q ) | ∀ p ∈ S gp ∈ S } . L ( S, Q ) := Lie( G ( S, Q )) – the Lie algebra of S . How to compute L ( S, Q ) ? If S ⊂ P 3 is given by a quadratic form f ( x ) = x T Ax over Q : S = { p = ( x 0 : x 1 : x 2 : x 3 ) T | p T Ap = 0 } , then G ( S, Q ) = { g ∈ GL 4 ( Q ) | g T Ag = λA } and L ( S, Q ) = { X ∈ gl 4 ( Q ) | X T A + AX = λA } . If S ⊂ P n is given by a set of quadratic forms f 1 , . . . , f k over Q , f i ( x ) = x T A i x : S = { p = ( x 0 : · · · : x n ) T | p T A i p = 0 ∀ i } , then G ( S, Q ) = { g ∈ GL n +1 ( Q ) | g T A i g ∈ � A 1 , . . . A k � Q ∀ i } and L ( S, Q ) = { X ∈ gl n +1 ( Q ) | X T A i + A i X ∈ � A 1 , . . . A k � Q ∀ i } . July 25, 2005 Page 5

  6. Parametrizing twists of P 1 × P 1 The canonical surface S 0 : x 1 x 2 = x 0 x 3 is parametrized by P 1 × P 1 : ϕ 0 : ( s 0 : s 1 ; t 0 : t 1 ) �→ ( s 0 t 0 : s 0 t 1 : s 1 t 0 : s 1 t 1 ) = ( x 0 : x 1 : x 2 : x 3 ) . G ( S 0 , Q ) = { g ∈ GL 4 ( Q ) | ∀ p ∈ S 0 gp ∈ S 0 } . The Lie algebra L ( S 0 , Q ) = Lie( G ( S 0 , Q )) is isomorphic to sl 2 ( Q ) ⊕ sl 2 ( Q ) ⊕ Q . L ( S 0 , Q ) ⊂ gl 4 ( Q ) . The module V 0 of L ( S 0 , Q ) is 4-dimensional irreducible sl 2 ⊕ sl 2 -module with the heighest weight (1 , 1) . July 25, 2005 Page 6

  7. Short review of the basic method Example: S : x 2 0 − x 2 1 − x 2 2 + x 2 3 is projectivelly equivalent to S 0 over Q : - the Lie algebra L ( S, Q ) ∼ = sl 2 ( Q ) ⊕ sl 2 ( Q ) ⊕ Q . - the module W of L ( S, Q ) is 4-dimensional irredcible sl 2 ⊕ sl 2 -module with the heighest weight (1 , 1) . The isomorphism ψ : V 0 → W : e 0 �→ v 3 + v 0 , e 1 �→ v 3 − v 0 , e 2 �→ v 2 + v 1 , e 3 �→ v 2 − v 1 is unique, up to multiplication by scalars. Therefore ψ is also the projective equivalence of S 0 and S ψ : ( x 0 : x 1 : x 2 : x 3 ) �→ ( x 3 + x 0 : x 3 − x 0 : x 2 + x 1 : x 2 − x 1 ) and gives us a parametrization of S : ϕ = ψ ◦ ϕ 0 : ( x 0 : x 1 : x 2 : x 3 ) = ( s 1 t 1 + s 0 t 0 : s 1 t 1 − s 0 t 0 : s 1 t 0 + s 0 t 1 : s 1 t 0 − s 0 t 1 ) . July 25, 2005 Page 7

  8. Sphere as a twist of P 1 × P 1 The unit sphere S : x 2 1 + x 2 2 + x 2 3 = x 2 0 is not isomorphic to S 0 ( x 1 x 2 = x 0 x 3 ) over Q : L ( S, Q ) = L 0 ( S, Q ) ⊕ I 4 , where L 0 ( S, Q ) is 6-dimensional simple Lie algebra which is a twist of sl 2 ⊕ sl 2 . But still S has a rational parametrization. We find a splitting field E of L 0 ( S, Q ) as the centroid of the algebra: Let E be the centralizer of ad( L 0 ( S, Q )) in gl ( L 0 ( S, Q )) . Then E = Q ( i ) and L 0 ( S, E ) ∼ = sl 2 ( E ) ⊕ sl 2 ( E ) . The corresponding module becomes sl 2 ⊕ sl 2 -module over E with maximal weight (1 , 1) . We get a parametrization of S over E : ψ : S 0 → S : ( x 0 : x 1 : x 2 : x 3 ) = ( − s 0 t 1 + s 1 t 0 : s 0 t 0 − s 1 t 1 : is 0 t 0 + is 1 t 1 : s 0 t 1 + s 1 t 0 ) . July 25, 2005 Page 8

  9. Sphere as a twist of P 1 × P 1 – continued F 1 , F 2 – the two families of lines on the surface. F 1 is a 1-dimensional family of lines over E : ∀ ( s : t ) ∈ P 1 ( E ) l ( s : t ) ∈ F 1 . For the centroid E we have [ E : Q ] = 2 . Let σ be the nontrivial automorphism of E over Q . If l ∈ F 1 then σ ( l ) ∈ F 2 . Therefore l ∩ σ ( l ) = { p } . p is fixed under σ , hence p is a rational point and ( s : t ) �→ l ( s : t ) ∩ σ ( l ( s : t ) ) is a map P 1 ( E ) → S ( Q ) . The projective line P 1 ( E ) can be parametrized by the projective plane P 2 ( Q ) : ( a : b : c ) �→ ( a + ib : c ) . This leads to a rational parametrization of the sphere ( a : b : c ) �→ ( c 2 + a 2 + b 2 : 2 ac : − 2 bc : c 2 − a 2 − b 2 ) with a, b, c, ∈ Q . July 25, 2005 Page 9

  10. Parametrizing blowups of P 2 The canonical blowup S 0 ⊂ P 8 is parametrized ( s : t : u ) �→ ( s 2 t : s 2 u : st 2 : stu : su 2 : t 3 : t 2 u : tu 2 : u 3 ) . Let S ⊂ P 8 be projectively equivalent to S 0 over Q . The Lie algebras of S 0 and S decompose as a sum of sl 2 ( Q ) and a 3-dimensional radical R : ϕ 0 : sl 2 ( Q ) + R → L ( S 0 , Q ) , ϕ : sl 2 ( Q ) + R → L ( S, Q ) . As sl 2 -modules: V ( ϕ 0 ) = W 2 ( ϕ 0 ) ⊕ W 3 ( ϕ 0 ) ⊕ W 4 ( ϕ 0 ) , V ( ϕ ) = W 2 ( ϕ ) ⊕ W 3 ( ϕ ) ⊕ W 4 ( ϕ ) with dim( W i ( ϕ 0 )) = dim( W i ( ϕ )) = i . July 25, 2005 Page 10

  11. Parametrizing blowups of P 2 – continued (1) Any isomorphism ψ : V ( ϕ 0 ) → V ( ϕ ) maps W i ( ϕ 0 ) to W i ( ϕ ) , i = 2 , 3 , 4 . P ( W 2 ( ϕ 0 )) ( P ( W 2 ( ϕ )) ) is the exceptional line of S 0 ( S ). One can use geometric methods to parametrize S . (2) Consider V ( ϕ 0 ) as an ( sl 2 + R ) -module: Elements of the radical carry W i ( ϕ 0 ) to W i − 1 ( ϕ 0 ) , i = 3 , 4 , so V ( ϕ 0 ) is irreducible. The same with V ( ϕ ) . The isomorphism ψ : V ( ϕ 0 ) → V ( ϕ ) as ( sl 2 + R ) -modules is unique up to multplication by scalars. Therefore it is also an isomorphism of S 0 and S and hence a parametrization of S . July 25, 2005 Page 11

Recommend


More recommend