update of the commissioning of the solaris 1 5 gev
play

Update of the commissioning of the SOLARIS 1.5 GeV storage ring - PowerPoint PPT Presentation

Update of the commissioning of the SOLARIS 1.5 GeV storage ring Justyna Wikacz , Radiation Protection Officer RadSynch17, National Synchrotron Radiation Research Center, Taiwan In this presentation: Synchrotron SOLARIS general


  1. Update of the commissioning of the SOLARIS 1.5 GeV storage ring Justyna Wikłacz , Radiation Protection Officer RadSynch17, National Synchrotron Radiation Research Center, Taiwan

  2. In this presentation: • Synchrotron SOLARIS – general description • Radiation measurement equipment • Machine commissioning: Doses in 2015 and 2016 Measurements during injection and accumulation with different current values Encountered problems • Beamline commissioning: Radiation levels along the beamline • Summary – plans for nearest future 2

  3. Synchrotron SOLARIS – general description The beam parameters at the Injector exit Main parameters of the SOLARIS storage ring 3

  4. Synchrotron SOLARIS – general description SOLARIS development: • Beginning of the building construction – January 2012 • Beginning of the machine installation – May 2014 • Beginning of the linac commissioning – December 2014 • Beginning of the ring commissioning – May 2015 • Beginning of the UARPES beamline commissioning – April 2016 • Beginning of the PEEM/XAS beamline commissioning – April 2017 Status: - Commissioning of the machine in progress (injection and electrons orbit optimization, beam measurements, RF optimization etc..) - Beam up to 400 mA /1.5 GeV - Commissioning of two beamlines in progress - One beamline under design 4

  5. Synchrotron SOLARIS – general description Beamlines 1. PEEM/XAS (Photoemission Electron Microscopy/X-ray Absorption Spectroscopy) • Source: bending magnet • Energy range: 200 - 2000 eV • Two end stations: PEEM/LEEM (Photoemission Electron Microscope/Low-energy electron microscope) XAS (X-ray Absorption Spectroscopy) 2. UARPES (Ultra Angle Resolved Photoemission Spectroscopy) • Source: quasi-periodic undulator • Energy range: 8 - 100 eV 3. PHELIX • Source: undulator • Energy range 50 - 1500 eV 5

  6. Synchrotron SOLARIS – general description Shielding walls • ordinary concrete ~2.3 g/cm3 heavy concrete ~3.2 g/cm 3 • linac ring – normal section ring – injection section ring 6

  7. Synchrotron SOLARIS – general description Additional shielding empty holes, cables and pipes trenches Front-end walls inside the ring lead walls around the kicker and the septum magnet 7

  8. Measurement equipment Radiation measurement equipment: • Radiation monitoring system - 7 stations on trolleys: 7 gamma detectors and 2 neutron detectors - Gamma detector: ionization chamber Thremo FHT 192 - Neutron detector: BF 3 Thremo FHT 752 - 4 station connected to the PSS • Portable meters - Thermo FH 40 G-L10 (proportional counter) - Fluke ASM 990S + GM 489-35 - Rotem RAM ION (ionization chamber) • Environmental TLDs - Gamma radiation - Read-out of registered doses once per 1 month in 2015 and once per 3 months in 2016 - Read-out performed by an external accredited company 8

  9. Machine commissioning Dose in 2015 – TLDs Integrated current: 10.4 Ah Dose limits (without background): Accumulated dose [mSv] in a time period in 2015 Total Unclasified area: up to 1 mSv No. accumulated Notes 1 2 3 4 5 6 7 8 dose [mSv] Supervised area: 1 – 6 mSv 1 <0.1 0.18 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 Controlled area: from 6 mSv About 30 cm above the 2 - - - <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 floor level 3 <0.1 0.16 - <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 4 <0.1 0.10 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 5 <0.1 0.16 - <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 6 <0.1 0.10 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 7 <0.1 <0.1 - <0.1 <0.1 0.18 <0.1 <0.1 < 1.0 8 <0.1 0.14 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 9 - - - <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 10 <0.1 0.11 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 Total Accumulated dose [mSv] in a time period in 2015 No. accumulated Notes 1 2 3 4 5 6 7 8 dose [mSv] 11 - - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 12 - - - <0.1 0.14 0.14 0.15 <0.1 < 1.0 13 - - <0.1 <0.1 0.19 0.15 0.34 0.21 < 1.1 On the station 06G+N 14 - - <0.1 <0.1 0.20 0.15 <0.1 <0.1 < 1.0 15 - - <0.1 <0.1 <0.1 0.17 0.21 0.22 < 1.0 16 - - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 On the station 02G 17 - - <0.1 <0.1 0.18 0.65 <0.1 <0.1 < 1.3 18 - - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 19 - - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 20 - - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 21 - - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 22 - - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 On the ring roof. on the 23 - - <0.1 <0.1 0.20 0.11 0.10 <0.1 < 1.0 station 05G 24 - - - <0.1 0.19 0.12 0.31 0.10 < 1.0 25 - - <0.1 0.36 0.16 0.16 0.25 0.17 < 1.2 26 - - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 27 - - <0.1 <0.1 <0.10 0.10 <0.1 <0.1 < 1.0 28 - - <0.1 <0.1 <0.10 0.10 <0.1 <0.1 < 1.0 29 - - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 1.0 9

  10. Machine commissioning Dose in 2016 – TLDs Accumulated dose [µSv] in a time Total period in 2016 No. accumulated Notes dose [µSv] 1 2 3 4 5 Integrated current: 197.66 Ah 1 133 251 235 204 823 133 About 30 cm above the 2 154 244 230 211 839 154 floor level Dose limits with background: 3 129 255 237 195 816 129 Unclasified area: up to 1788 µSv 4 137 269 228 204 838 137 Supervised area: 1788 – 6788 µSv 5 106 250 211 204 771 106 Controlled area: from 6788 µSv 6 129 222 228 192 771 129 7 115 231 215 185 746 115 8 115 236 218 187 756 115 On the le ve l o f the 9 209 212 182 187 790 209 klystro n wa ve g uide 10 135 220 169 192 716 135 Accumulated dose [mSv] in a time period Total in 2016 No. accumulated Notes dose [mSv] 1 2 3 4 11 92 218 179 183 672 12 203 323 277 233 1036 13 148 275 254 230 907 14 475 310 287 268 1340 15 1138 940 524 467 3069 Sup e rvise d a re a 16 457 1199 1175 1075 3906 Sup e rvise d a re a 17 90 214 319 176 799 18 76 199 170 154 599 19 107 211 167 169 654 20 115 373 282 252 1022 21 123 238 255 216 832 22 74 247 183 204 708 23 94 219 193 202 708 24 71 214 183 185 653 25 84 260 200 197 741 26 168 284 209 195 856 On the ring roof On the ring roof. guard 27 84 196 149 149 578 rail On the ring roof. stairs 28 141 198 165 175 679 platform 29 319 369 233 230 1151 30 168 227 184 169 748 31 235 267 230 200 932 32 162 230 213 200 805 33 129 259 211 197 796 10 34 129 240 226 207 802 35 131 250 227 194 802

  11. Machine commissioning RMS stations – normal operation 10.02.2017 Current: ~350 mA Measurement results in µSv/h Injection: 14.30 (N: 0.23) Ramping: 0.94 (N: bl) Injection: 1.36 Ramping: bl Injection: 0.22 Ramping: 0.10 Injection: 3.80 (N: 1.94) Ramping: 0.07 (N: bl) Injection: 0.18 Ramping: 0.38 11

  12. Machine commissioning Injection: 9.90 (N: 0.24) RMS stations – normal operation Ramping: 0.50 (N: bl) 08-10.03.2017 Current: ~250 mA Measurement results in µSv/h Injection: bl Ramping: bl Injection: 1.60 Ramping: bl Injection: bl Ramping: 0.15 Injection: 0.12 Injection: 10.50 Ramping: bl Ramping: 0.13 Injection: 0.76 Ramping: 0.10 Injection: 0.30 Ramping: 0.10 Injection: 0.13 Injection: 0.36 Ramping: bl Ramping: 3.50 Injection: 0.15 Injection: 0.14 Ramping: 0.17 Ramping: 0.10 Injection: 0.18 Ramping: 0.12 Injection: 3.40 (N: 1.34) Ramping: bl Injection: 1.80 Ramping: 0.16 Injection: 0.19 Injection: 0.25 Ramping: 0.21 Ramping: bl 12

  13. Machine commissioning Area classification during operation Supervised area Supervised area Unclassified area 13

  14. Machine commissioning RMS stations – scrapers movement - Measurements of minimum chamber aperture - Lifetime measurements (electron losses) S06 G+N (section 1) S07 G+N (service galery) S05 G S04 G (ring roof) (section 7) 14

  15. Machine commissioning Encountered problems having influence on radiation levels: • Bent straight sections in the ring - increased radiation levels in a few sections • Lack of Landau (harmonic) – electron bunches extending - cavities installed in January 2016 • Vacuum conditioning, unknown real pressure values - Scattered electrons have influence on vacuum measurements • Lack of chopper – fitting the linac electron structure into the ring RF - Not installed yet - Will cause more effective injection. less losses during injection and possibility of choosing filling paterns • Cooling water instability - Oscillation of water temperature have Influence on the beam orbit 15

Recommend


More recommend