universal monte carlo event generator
play

Universal Monte Carlo Event Generator Nobuo Sato Supported by - PowerPoint PPT Presentation

Universal Monte Carlo Event Generator Nobuo Sato Supported by Jefferson Lab Laboratory CHEP19, Adelaide research and development (LDRD19-13) 1 / 18 Partnership with computer scientists Y. Alanazi (ODU) M. P. Kuchera (Davidson College) Y.


  1. Universal Monte Carlo Event Generator Nobuo Sato Supported by Jefferson Lab Laboratory CHEP19, Adelaide research and development (LDRD19-13) 1 / 18

  2. Partnership with computer scientists Y. Alanazi (ODU) M. P. Kuchera (Davidson College) Y. Li (co-PI) (ODU) T. Liu (JLab) R. E. McClellan (JLab) W. Melnitchouk (PI) (JLab) E. Pritchard (Davidson College) R. Ramanujan (Davidson College) M. Robertson (Davidson College) NS (co-PI) (JLab) R. R. Strauss (Davidson College) L. Velasco (Dallas) 2 / 18

  3. The big picture hadrons as emergent phenomena of QCD quarks and gluons 3 / 18

  4. The big picture hadrons as emergent phenomena of QCD nucleon structure quarks and gluons 3 / 18

  5. The big picture hadrons as emergent phenomena of QCD nucleon structure quarks and gluons hadronization 3 / 18

  6. Motivations A new era of nuclear physics has started with the JLab 12 GeV program 4 / 18

  7. Motivations A new era of nuclear physics has started with the JLab 12 GeV program New tools based on Machine Learning (ML) to boost the discovery potential are needed 4 / 18

  8. The goals 5 / 18

  9. The goals Build a theory-free MCEG 5 / 18

  10. The goals Build a theory-free MCEG Map out particles correlations without biases from approximated theory 5 / 18

  11. The goals Build a theory-free MCEG Map out particles correlations without biases from approximated theory MCEG as a data storage utility 5 / 18

  12. Nature e − P 6 / 18

  13. Nature e − experimental P detector 6 / 18

  14. Nature e − experimental P detector detector level events 6 / 18

  15. Nature vertex level events e − experimental P detector detector level events 6 / 18

  16. Nature vertex level events e − experimental P detector detector level events 6 / 18

  17. Nature vertex level events experimental detector detector level events 7 / 18

  18. Can we use ML to: Nature vertex level events experimental detector detector level events 7 / 18

  19. Can we use ML to: Nature simulate vertex level events? vertex level events experimental detector detector level events 7 / 18

  20. Can we use ML to: Nature simulate vertex level events? vertex level events simulate detector level events? experimental detector detector level events 7 / 18

  21. Can we use ML to: Nature simulate vertex level events? vertex level events simulate detector level events? experimental detector simulate nature ? detector level events 7 / 18

  22. Nature UMCEG vertex level vertex level events events experimental detector simulator detector detector level detector level events events 7 / 18

  23. datacompression Nature UMCEG vertex level vertex level events events experimental detector simulator detector detector level detector level events events 7 / 18

  24. Our strategy Event level ML training → GAN 8 / 18

  25. Our strategy Event level ML training → GAN Use a dual GAN as the event generator ρ (particles | multiplicity ) × ρ (multiplicity) � �� � � �� � vectors generator multiplicity generator 8 / 18

  26. Challenges Find optimal data representation → what is the image of an event ? 9 / 18

  27. Challenges Find optimal data representation → what is the image of an event ? How to make the GAN to learn the features of the event ? → CNN 9 / 18

  28. Challenges Find optimal data representation → what is the image of an event ? How to make the GAN to learn the features of the event ? → CNN How to escalate from low to higher multiplicities? 9 / 18

  29. Our current work in progress Use Pythia as a training and validation tool 10 / 18

  30. Our current work in progress Use Pythia as a training and validation tool Ignore detector effects 10 / 18

  31. Our current work in progress Use Pythia as a training and validation tool Ignore detector effects Start with inclusive particle generator ρ (particles | multiplicity) → ρ (particles + X) 10 / 18

  32. Pythia UMCEG vertex level vertex level events events detector level detector level events events 11 / 18

  33. 10 0 Pythia GAN 10 − 1 probabilities 10 − 2 10 − 3 10 − 4 10 − 5 L ¯ γ e − e + µ − µ + ν e ¯ ν e ν µ ¯ ν µ ν τ ¯ K 0 K 0 ν τ p n π + π − K + p n ¯ ¯ K − L Multiplicity generator 12 / 18

  34. z ∈ N (0 , 1) Generator FC NN Pythia FC NN l + p → l ′ + X FC NN p x p y p x p y p z p z p x p y p x p y p z p z p i → k i p i → k i Features Transform Features Extension k x k y k x k y k z k i k j k T k 0 k z /k T k z k i k j k T k 0 k z /k T k x k y k x k y k z k i k j k T k 0 k z /k T k z k i k j k T k 0 k z /k T Discriminator FC NN MMD FC NN FC NN Vectors generator Wasserstein Loss MMD Loss 13 / 18

  35. z ∈ N (0 , 1) Event image = l ′ Generator FC NN x,y,z Pythia FC NN l + p → l ′ + X FC NN p x p y p x p y p z p z p x p y p x p y p z p z p i → k i p i → k i Features Transform Features Extension k x k y k x k y k z k i k j k T k 0 k z /k T k z k i k j k T k 0 k z /k T k x k y k x k y k z k i k j k T k 0 k z /k T k z k i k j k T k 0 k z /k T Discriminator FC NN MMD FC NN FC NN Vectors generator Wasserstein Loss MMD Loss 13 / 18

  36. z ∈ N (0 , 1) Event image = l ′ Generator FC NN x,y,z Pythia FC NN l + p → l ′ + X FC NN Feature extension: p x p y p x p y p z p z p x p y p x p y p z p z l ′ i · l ′ j , l ′ 0 , l ′ z /l ′ p i → k i p i → k i Features Transform T Features Extension k x k y k x k y k z k i k j k T k 0 k z /k T k z k i k j k T k 0 k z /k T k x k y k x k y k z k i k j k T k 0 k z /k T k z k i k j k T k 0 k z /k T Discriminator FC NN MMD FC NN FC NN Vectors generator Wasserstein Loss MMD Loss 13 / 18

  37. z ∈ N (0 , 1) Event image = l ′ Generator FC NN x,y,z Pythia FC NN l + p → l ′ + X FC NN Feature extension: p x p y p x p y p z p z p x p y p x p y p z p z l ′ i · l ′ j , l ′ 0 , l ′ z /l ′ p i → k i p i → k i Features Transform T Features Extension k x k y k x k y k z k i k j k T k 0 k z /k T k z k i k j k T k 0 k z /k T k x k y k x k y k z k i k j k T k 0 k z /k T k z k i k j k T k 0 k z /k T Discriminator WGAN+MMD Butter, Plehn, FC NN MMD Winterhalder (’19) FC NN FC NN Vectors generator Wasserstein Loss MMD Loss 13 / 18

  38. Validation 14 / 18

  39. Validation Relevant observables for inclusive DIS Q 2 = − ( l − l ′ ) 2 Q 2 x bj = 2 P · ( l − l ′ ) 14 / 18

  40. Validation Relevant observables for inclusive DIS Q 2 = − ( l − l ′ ) 2 Q 2 x bj = 2 P · ( l − l ′ ) x bj , Q 2 not included as features 14 / 18

  41. 10 − 1 Normalized Yield Normalized Yield 10 1 10 − 3 10 0 10 − 5 10 − 1 10 − 7 GAN GAN Pythia 10 − 2 Pythia 10 − 9 10 1 10 2 10 3 10 4 0 . 01 0 . 1 1 Q 2 (GeV 2 ) x bj 10 0 Error bands generated with GAN Normalized Yield 10 − 1 Pythia bootstrapped samples 10 − 2 10 − 3 10 − 4 10 − 5 0 5 10 15 20 25 30 p T (GeV) 15 / 18

  42. Q 2 Pythia 10 2 Isocontours are in 10 1 agreement GAN x bj , Q 2 correlation is 10 2 learned without adding x bj · Q 2 feature 10 1 0 . 001 0 . 01 0 . 1 1 x bj 16 / 18

  43. Summary and outook It is possible to train a GAN at the event level to build a MCEG 17 / 18

  44. Summary and outook It is possible to train a GAN at the event level to build a MCEG The current design provides a blueprint for a generator with higher multiplicity 17 / 18

  45. Summary and outook More work is needed, but the results are encouraging 18 / 18

  46. Summary and outook More work is needed, but the results are encouraging A fully trained UMCEG will be a complementary tool to theory-based MCEGs such as Pythia 18 / 18

Recommend


More recommend