TWO ASPECTS OF SIDM Michel H.G. Tytgat Université Libre de Bruxelles Belgium GGI, Florence, September 11th 2018
SIDM MOTIVATION DIRECT DETECTION IS TESTING FI Direct detection is testing Freeze-in Th. Hambye, M.T., J. Vandecasteele & L. Vanderheyden (2018) (The Four Basic Ways of Creating Dark Matter Through a Portal) X. Chu, Th. Hambye & M.T (2012) SIDM + NS → BH Non-primordial solar mass black holes C. Kouvaris, P. Tinyakov, M.T. (2018)
WHY SIDM ? core or cusp? to-big-to-fail ? missing satellites ? CDM only simulation
SIDM may alleviate the small-scale problems core/cusp Spergel & Steinhardt (2000),… too-big-to-fail Vogelsberger, Zavala & Loeb (2012),… diversity* Hamada, Kaplinghat, Pace & Yu (2016),… collisions ⟶ thermalized DM ⟶ core instead of cusp m ∼ cm 2 ≡ barn σ i.e. seemingly hadronic g GeV but more generally light mediator
DIVERSITY PROBLEM There is a diversity problem unexplained by CDM + BARYONS simulations (mostly dwarf galaxies) all same v max Oman et al , arXiv:1504.01437
DIVERSITY PROBLEM σ /m ∼ cm 2 Diversity problem solved/alleviated with g Hamada, Kaplinghat, Pace & Yu, arXiv:1611.02716
HIDDEN SECTOR Patt & Wilczek (2006) HS HS SM
THE SM PORTALS Patt & Wilczek (2006) renormalizable SM singlet interactions operators (i.e. dimensionless couplings) ∆ L ⊃ y ¯ L ˜ L ˜ ¯ Sterile neutrino HN H Dodelson & Widrow (1994) … ∆ L ⊃ ✏ B µ ν X µ ν B µ ν Kinetic mixing Holdom (1986) … ∆ L ⊃ λ S 2 H † H H † H Higgs portal Linked to EWSB? This one is also Lorentz invariant Silveira & Zee (1985) Veltman & Ynderain (1989) …
PART I DIRECT DETECTION IS TESTING FREEZE-IN Direct detection is testing Freeze-in Th. Hambye, M.T., J. Vandecasteele & L. Vanderheyden (2018)
KINETIC MIXING hidden charged χ γ 0 dark photon HS HS SM ( also ) Z α 0 gauge interaction in HS χ χ stable ~ SM electron m χ p ↵ 0 / ↵ χ suppressed coupling to SM = ✏ only 4 parameters m γ 0
FIMP THROUGH KINETIC MIXING some heavy particles X ν HS B µ HS SM Holdom (1986) is naturally tiny ! κ DM feebly coupled to SM Feebly Interacting Massive Particle or FIMP Chu, Hambye, M.T. ‘12
ABUNDANCE FROM FREEZE-IN HS feebly coupled ~ no thermal equilibrium abundance could built up from slow processes ¯ f χ χ γ 0 Z p ↵ 0 / ↵ ∝ = ✏ f ¯ ¯ χ χ FREEZE-IN * Mc Donald ’02; Hall, Jedamzik & March-Russell ’10; Chu, Hambye, M.T. ‘12
ABUNDANCE FROM FREEZE-IN 10 � 5 � Y ∞ ⇡ h σ v i n SM � � H � T FI 10 � 7 Y = n/s Y ∼ Γ × τ U 10 � 9 10 � 11 Freeze-in at T FI ≈ max( m DM , m SM ) 10 � 13 0.01 0.1 1 10 100 x = m/T
ABUNDANCE FROM FREEZE-IN m γ 0 = 0 Y ∝ κ 2 /m DM Y ∝ κ 2 /m DM Y ∝ κ 2 /m e Z decay Y ∝ κ 2 Chu, Hambye, M.T. ‘12
ABUNDANCE FROM FREEZE-OUT DM + DM − → SM + SM Γ = σ v n DM ABUNDANCE FROM FREEZE-IN SM + SM − → DM + DM Γ = σ v n SM
FREEZE-IN vs FREEZE-OUT HS thermalizes Ω dm freeze-in freeze-out regime regime 0.23 O(1) 10 -11 κ
4 BASIC WAYS TO CREATE DM THROUGH A PORTAL II : reannihilation III : freeze-out in hidden sector (secluded DM) IV : usual I : freeze-in freeze-out Chu, Hambye, M.T. ‘12
DIRECT DETECTION TEST OF FREEZE-IN HOW TO TEST FREEZE-IN ? DIRE p ↵ 0 / ↵ = (10 � 11 ) cosmic abundance = ✏ DM SM direct detection DM SM
PRODUCTION THROUGH S-CHANNEL ¯ f χ γ 0 f ¯ χ s-channel determines relic abundance very small cross section Rutherford (1911)
RUTHERFORD SCATTERING - DIRECT DETECTION recoil energy N E R χ γ 0 in keV range t-channel N χ v ~ 200 km/s (halo DM) m N κ 2 α 2 Z 2 d σ 1 ∝ ∼ (2 m N E R + m 2 E 2 γ 0 ) 2 dE R R large enhancement if m γ 0 . 40 MeV
DIRECT DETECTiON IS TESTING FREEZE IN n.b.: XENON1T 2018 Not the same spectrum as a WIMP, Must recasti the direct detection constraints 10 − 10 κ Freeze-in 10 − 11 10 1 10 2 10 3 m χ (GeV) first direct detection test of a FI scenario Hambye, M.T., Vandecasteele, Vanderheyden ‘18
RECASTING DIRECT DETECTION LIMITS heavy mediator light mediator XENON1T 2018 10 − 10 κ Freeze-in 10 − 11 10 1 10 2 10 3 m χ (GeV) ( m dm , σ dm ,n ) ( m χ , κ ) We minimized the differential rate « quadratic distance » XENON1T efficiency
DIRECT DETECTiON IS TESTING FREEZE IN Hambye, M.T., Vandecasteele, Vanderheyden ‘18
SIDM : RUTHERFORD SCATTERING AGAIN χ ¯ χ γ 0 t-channel v dwarf ∼ 10 km / s ¯ χ χ 4 α 0 2 m 2 γ 0 ) 2 ∼ α 0 2 m 2 d σ χ χ d Ω = χ v 2 sin 2 ( θ / 2) + m 2 m 4 (4 m 2 γ 0 « As big as a barn » for in MeV range m γ 0
DIRECT DETECTION & SIDM PARAMETER SPACE α 0 = 10 � 2 α Hambye, M.T., Vandecasteele, Vanderheyden ‘18
DIRECT DETECTION TESTING SELF-INTERACTING FIMP DIRECT DETECTION & SIDM PARAMETER SPACE α 0 = 10 � 2 α Hambye, M.T., Vandecasteele, Vanderheyden ‘18
PART II SOLAR MASS BH FROM SIDM
m NS ∼ m � N B ∼ 10 57 v DM ∼ 200 km/s . Neutron Star (not to the scale) DM (not to the scale)
DM + NS → BH DM capture thermalization annihilation self-gravitation assumes DM does not annihilate (asymmetric DM) mini-black hole black hole
ASYMMETRIC DM Ω DM = m DM Y DM ≈ 5 = O (1) Ω B m N Y B 1 10 - 4 10 - 8 Baryons avoiding Baryon asymmetry Abundancies 10 - 12 WIMP freezing-out 10 - 16 10 - 20 10 50 100 500 1000 5000 1 ¥ 10 4 M dm T Crooked Forest (West Pomerania, Poland)
CAPTURE OF DM IN NS Capture rate Goldman & Nussinov (1989) - Kouvaris (2008) ✓ σ ◆ dN acc R ? R Sch √ ρ dm , 1 = 6 π Min dt m dm v dm 1 − R Sch /R ? σ cr Critical cross section σ cr = 0 . 45 m n R ? /M ? ≈ 1 . 3 × 10 − 45 cm 2 (neutron star) Maximal mass captured M acc ∼ 10 � 15 M � N acc ≈ 10 39 (TeV /m dm )
DM + NS → BH N acc ∼ 10 39 (TeV /m dm ) DM capture Goldman & Nussinov (1989) ⌘ 2 ✓ 10 − 45 cm 2 ◆ ⇣ m dm t th ∼ 10 2 yr Kouvaris & Tinyakov (2010) TeV σ thermalization ◆ 1 / 2 ✓ T c ✓ TeV ◆ 1 / 2 ◆ 1 / 2 ✓ T c r th ≈ ∼ 10 cm 10 5 K G ρ c m dm m dm ✓ TeV ◆ 5 / 2 N acc m dm & ρ c ∼ 10 39 GeV N cr & 10 38 self-gravitation → r 3 cm 3 m dm th ✓ TeV ◆ 3 ◆ 3 ✓ M Pl ∼ 5 · 10 48 mini-black hole N Ch & m m dm Bondi accretion dt = 4 π G 2 M 2 ρ c − π 3 dM → M bh & 10 � 20 M � 15 R 2 T 4 black hole c 2 s Kouvaris & Tinyakov (2013) Hawking radiation
SIDM + NS → BH WIMPS THAT WOULD DEVOUR STARS candidates that alleviate CDM issues 1 J2124-3358 0.100 fraction of collapsed NS ( f ) (270 pc;7.2 Gyr) fraction 0.010 of NS transformed 0.001 into BH 10 - 4 10 - 5 - 51 - 50 - 49 - 48 - 47 - 46 Log [ σ χ n / cm 2 ] Kouvaris, Tinyakov & MT (2018)
SOLAR MASS BINARY MERGERS
BACKUP
INTERMEDIATE REGIME : RECOMBINATION
CONSTRAINTS ON MILLICHARGED PARTICLES log κ log( m χ / eV)
CONSTRAINTS ON DARK PHOTON ✏ (old) compilation from Redondo & Ringwald, 2010
WIMPS THAT WOULD DEVOUR STARS ! ✓ t ✓ σ ◆ ◆ M acc ∼ 10 39 TeV ρ dm DM capture Min , 1 GeV/cm 3 Gyr σ cr Goldman & Nussinov (1989) Goldman & Nussinov (1989) ⌘ 2 ✓ 10 − 45 cm 2 ◆ ⇣ m dm t th ∼ 10 2 yr Kouvaris & Tinyakov (2010) Kouvaris & Tinyakov (2010) TeV σ thermalization ✓ TeV ◆ 1 / 2 ✓ T c ◆ 1 / 2 ◆ 1 / 2 ✓ T c r th ≈ ∼ 10 cm 10 5 K G ρ c m dm m dm ◆ 3 / 2 ✓ TeV N acc m dm & ρ c ∼ 10 39 GeV N cr & 10 38 self-gravitation → r 3 m dm cm 3 th higher density, higher T, further cooling, further collapse ✓ TeV ◆ 3 ◆ 3 & k F ∼ N 1 / 3 GNm 2 ✓ M Pl mini-black hole ∼ 5 · 10 48 dm N Ch & → m m dm R R Overcoming Fermi pressure requires m dm & 1000 TeV black hole Bramante, Linden & Tsai (2017);Kouvaris, Tinyakov & MT (2018)
PRIMORDIAL BLACK HOLES ? Figure from Garcia-Bellido & Clesse (2018)
Recommend
More recommend