tutorials
play

Tutorials Interpretable Deep Learning: Towards Understanding & - PowerPoint PPT Presentation

Tutorials Interpretable Deep Learning: Towards Understanding & Explaining DNNs P a r t 2 : M e t h o d s o f E x p l a n a t i o n W o j c i e c h S a m e k , G r g o i r e M o n t a v


  1. Tutorials Interpretable Deep Learning: Towards Understanding & Explaining DNNs P a r t 2 : M e t h o d s o f E x p l a n a t i o n W o j c i e c h S a m e k , G r é g o i r e M o n t a v o n , K l a u s - R o b e r t M ü l l e r 1 / 3 6

  2. W h a t W i l l b e C o v e r e d i n P a r t 2 explaining interpreting individual decisions predicted classes 2 / 3 6

  3. E x p l a i n i n g I n d i v i d u a l D e c i s i o n s Q: Where in the image the neural networks sees evidence for a car? non-car car 3 / 3 6

  4. E x a m p l e s o f M e t h o d s t h a t E x p l a i n D e c i s i o n s 4 / 3 6

  5. E x p l a i n i n g I n d i v i d u a l D e c i s i o n s non-car car Q: In which proportion has each car contributed to the prediction? 5 / 3 6

  6. E x p l a i n i n g b y D e c o m p o s i n g G o a l : D e t e r m i n e t h e s h a r e o f t h e o u t p u t t h a t s h o u l d b e a t t r i b u t e d t o e a c h i n p u t v a r i a b l e . i n p u t D N N D e c o m p o s i t i o n p r o p e r t y : 6 / 3 6

  7. E x p l a i n i n g b y D e c o m p o s i n g G o a l : D e t e r m i n e t h e s h a r e o f t h e o u t p u t t h a t s h o u l d b e a t t r i b u t e d t o e a c h i n p u t v a r i a b l e . D e c o mp o s i n g a p r e d i c t i o n i s g e n e r a l l y d i f fi c u l t . 7 / 3 6

  8. S e n s i t i v i t y A n a l y s i s i n p u t e v i d e n c e f o r “ c a r ” D N N e x p l a n a t i o n f o r “ c a r ” ( h e a t m a p ) : c o m p u t e s f o r e a c h p i x e l : 8 / 3 6

  9. S e n s i t i v i t y A n a l y s i s Question: If sensitivity analysis computes a decomposition of something: Then, what does it decompose? 9 / 3 6

  10. S e n s i t i v i t y A n a l y s i s S e n s i t i v i t y a n a l y s i s e x p l a i n s a v a r i a t i o n o f t h e f u n c t i o n , n o t t h e f u n c t i o n v a l u e i t s e l f . i n p u t e x p l a n a t i o n f o r “ c a r ” v a r i a t i o n = m a k e s o m e t h i n g a p p e a r l e s s / m o r e a c a r . 1 0 / 3 6

  11. T h e T a y l o r E x p a n s i o n A p p r o a c h r o o t p o i n t 1 . T a k e a l i n e a r m o d e l : 2 . F i r s t - o r d e r e x p a n s i o n a t r o o t p o i n t : 3 . I d e n t i f y i n g l i n e a r t e r m s : a d e c o mp o s i t i o n e x p l a n a t i o n d e p e n d s o n t h e r o o t p o i n t . O b s e r v a t i o n : 1 1 / 3 6

  12. T h e T a y l o r E x p a n s i o n A p p r o a c h r o o t p o i n t O b t a i n e d r e l e v a n c e s c o r e s H o w t o c h o o s e t h e r o o t p o i n t ? - C l o s e n e s s t o t h e a c t u a l d a t a p o i n t - M e m b e r s h i p t o t h e i n p u t d o m a i n ( e . g . p i x e l s p a c e ) - M e m b e r s h i p t o t h e d a t a m a n i f o l d . 1 2 / 3 6

  13. N o n - L i n e a r M o d e l s N o n l i n e a r m o d e l s e c o n d - o r d e r t e r m s a r e h a r d t o i n t e r p r e t a n d c a n b e v e r y l a r g e S i mp l e T a y l o r d e c o mp o s i t i o n i s n o t s u i t a b l e f o r h i g h l y n o n - l i n e a r mo d e l s . 1 3 / 3 6

  14. O v e r c o m i n g N o n L i n e a r i t y I n t e g r a t e d G r a d i e n t s : [ S u n d a r a r a j a n ’ 1 7 ] • F u l l y d e c o m p o s a b l e • R e q u i r e c o m p u t i n g a n i n t e g r a l ( e x p e n s i v e ) • W h i c h i n t e g r a t i o n p a t h ? 1 4 / 3 6 [ S u n d a r a r a j a n ’ 1 7 ] A x i o m a t i c A t t r i b u t i o n f o r D e e p N e t w o r k s . I C M L 2 0 1 7 : 3 3 1 9 - 3 3 2 8

  15. O v e r c o m i n g N o n L i n e a r i t y S p e c i a l c a s e w h e n t h e o r i g i n i s a r o o t p o i n t a n d t h e g r a d i e n t a l o n g t h e i n t e g r a t i o n p a t h i s c o n s t a n t : g r a d i e n t x i n p u t 1 5 / 3 6

  16. Let’s consider a different approach ... 1 6 / 3 6

  17. O v e r c o m i n g N o n L i n e a r i t y V i e w t h e d e c i s i o n a s a g r a p h c o mp u t a t i o n i n s t e a d o f a f u n c t i o n e v a l u a t i o n , a n d p r o p a g a t e t h e d e c i s i o n b a c k w a r d s u n t i l t h e i n p u t i s r e a c h e d . 1 7 / 3 6

  18. L a y e r - W i s e R e l e v a n c e P r o p a g a t i o n ( L R P ) [ B a c h ’ 1 5 ] 1 8 / 3 6

  19. G r a d i e n t - B a s e d v s . L R P 1 9 / 3 6

  20. L a y e r - W i s e R e l e v a n c e P r o p a g a t i o n ( L R P ) [ B a c h ’ 1 5 ] neuron contribution C a r e f u l l y e n g i n e e r e d p r o p a g a t i o n r u l e : available for redistribution pooling normalization received messages term 2 0 / 3 6

  21. L R P P r o p a g a t i o n R u l e s : T w o V i e w s View 1: neuron contribution available for redistribution pooling normalization received messages term available for View 2: redistribution neuron activation weighted sum normalization 2 1 / 3 6 term

  22. I m p l e m e n t i n g P r o p a g a t i o n R u l e s ( 1 ) available for redistribution neuron activation weighted sum normalization term E l e m e n t - w i s e o p e r a t i o n s V e c t o r o p e r a t i o n s 2 2 / 3 6

  23. I m p l e m e n t i n g P r o p a g a t i o n R u l e s ( 2 ) available for redistribution neuron activation C o d e t h a t r e u s e s f o r w a r d a n d g r a d i e n t c o m p u t a t i o n s : weighted sum normalization term S e e a l s o h t t p : / / w w w . h e a t m a p p i n g . o r g / t u t o r i a l 2 3 / 3 6

  24. H o w F a s t i s L R P ? G P U - b a s e d i m p l e m e n t a t i o n o f L R P : C h e c k o u t i N N v e s t i g a t e [ A l b e r ’ 1 8 ] h t t p s : / / g i t h u b . c o m / a l b e r m a x / i n n v e s t i g a t e 2 4 / 3 6

  25. Is there an underlying mathe- matical framework for LRP? 2 5 / 3 6

  26. D e e p T a y l o r D e c o m p o s i t i o n [ M o n t a v o n ’ 1 7 ] S u p p o s e t h a t w e h a v e p r o p a g a t e d t h e r e l e v a n c e u n t i l Q u e s t i o n : a g i v e n l a y e r . H o w s h o u l d i t b e p r o p a g a t e d o n e l a y e r f u r t h e r ? I d e a : B y p e r f o r m i n g a T a y l o r e x p a n s i o n o f t h e r e l e v a n c e . 2 6 / 3 6

  27. T h e S t r u c t u r e o f R e l e v a n c e available for redistribution neuron R e mi n d e r : activation weighted sum normalization term O b s e r v a t i o n : R e l e v a n c e a t e a c h l a y e r i s a p r o d u c t o f t h e a c t i v a t i o n a n d a n a p p r o x i m a t e l y l o c a l l y c o n s t a n t t e r m . 2 7 / 3 6

  28. D e e p T a y l o r D e c o m p o s i t i o n R e l e v a n c e n e u r o n : T a y l o r e x p a n s i o n : R e d i s t r i b u t i o n : 2 8 / 3 6

  29. C h o o s i n g t h e R o o t P o i n t ( D e e p T a y l o r g e n e r i c ) C h o i c e o f r o o t p o i n t 1 . n e a r e s t r o o t ✔ 2 . r e s c a l e d e x c i t a t i o n s (same as LRP - ) α β 1 0 2 9 / 3 6

Recommend


More recommend