transversality subtransversality and intrinsic
play

Transversality, Subtransversality and Intrinsic Transversality of - PowerPoint PPT Presentation

Transversality, Subtransversality and Intrinsic Transversality of Pairs of Sets Alexander Kruger Centre for Informatics and Applied Optimization, Faculty of Science and Technology Federation University Australia, Ballarat


  1. Transversality, Subtransversality and Intrinsic Transversality of Pairs of Sets Alexander Kruger Centre for Informatics and Applied Optimization, Faculty of Science and Technology Federation University Australia, Ballarat a.kruger@federation.edu.au RMIT Optimisation Group, Melbourne, 3 March 2017 Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 1 / 34

  2. Regularity/Transversality Constraint qualifications Qualification conditions in subdifferential calculus Qualification conditions in convergence analysis Banach open mapping principle Lyusternik–Graves theorem Transversality of sets in differential geometry Separation theorem Optimality/stationarity Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 2 / 34

  3. Regularity/Transversality Constraint qualifications Qualification conditions in subdifferential calculus Qualification conditions in convergence analysis Banach open mapping principle Lyusternik–Graves theorem Transversality of sets in differential geometry Separation theorem Optimality/stationarity Regularity Transversality ⇐ ⇒ of (multi)functions of collections of sets Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 2 / 34

  4. Feasibility Problem and Alternating Projections Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 3 / 34

  5. Feasibility Problem and Alternating Projections Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 4 / 34

  6. Feasibility Problem and Alternating Projections Linear convergence (with rate c ∈ (0 , 1)): x ) ≤ cd ( x k , ¯ d ( x k +1 , ¯ x ) Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 4 / 34

  7. Feasibility Problem and Alternating Projections Linear convergence (with rate c ∈ (0 , 1)): x ) ≤ cd ( x k , ¯ d ( x k +1 , ¯ x ) Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 4 / 34

  8. Feasibility Problem and Alternating Projections Linear convergence (with rate c ∈ (0 , 1)): x ) ≤ cd ( x k , ¯ d ( x k +1 , ¯ x ) Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 5 / 34

  9. Feasibility Problem and Alternating Projections Linear convergence No linear convergence (with rate c ∈ (0 , 1)): x ) ≤ cd ( x k , ¯ d ( x k +1 , ¯ x ) Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 5 / 34

  10. Outline Transversality/Subtransversality 1 Extremality 2 Dual characterizations of transversality/subtransversality 3 Intrinsic transversality 4 Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 6 / 34

  11. Outline Transversality/Subtransversality 1 Extremality 2 Dual characterizations of transversality/subtransversality 3 Intrinsic transversality 4 Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 7 / 34

  12. Subtransversality X – normed vector space, A , B ⊂ X , x ∈ A ∩ B ¯ Definition { A , B } is subtransversal at ¯ x if ∃ α, δ > 0 such that α d ( x , A ∩ B ) ≤ max { d ( x , A ) , d ( x , B ) } ∀ x ∈ B δ (¯ x ) Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 8 / 34

  13. Subtransversality X – normed vector space, A , B ⊂ X , x ∈ A ∩ B ¯ Definition { A , B } is subtransversal at ¯ x if ∃ α, δ > 0 such that α d ( x , A ∩ B ) ≤ max { d ( x , A ) , d ( x , B ) } ∀ x ∈ B δ (¯ x ) (Dolecki, 1982); (Ioffe, 1989); (local) linear regularity (Bauschke, Borwein, 1993); linear estimate, linear coherence (Penot, 1998, 2013); metric inequality (Ngai, Th´ era, 2001); subtransversality (Ioffe, 2015) Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 8 / 34

  14. Subtransversality X – normed vector space, A , B ⊂ X , x ∈ A ∩ B ¯ Definition { A , B } is subtransversal at ¯ x if ∃ α, δ > 0 such that α d ( x , A ∩ B ) ≤ max { d ( x , A ) , d ( x , B ) } ∀ x ∈ B δ (¯ x ) (Dolecki, 1982); (Ioffe, 1989); (local) linear regularity (Bauschke, Borwein, 1993); linear estimate, linear coherence (Penot, 1998, 2013); metric inequality (Ngai, Th´ era, 2001); subtransversality (Ioffe, 2015) x ) := sup { α in the above condition } str [ A , B ](¯ Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 8 / 34

  15. Transversality X – normed vector space, A , B ⊂ X , x ∈ A ∩ B ¯ Definition (K., 2005; K., Luke, Thao, 2016) { A , B } is transversal at ¯ x if ∃ α, δ > 0 such that α d ( x , ( A − x 1 ) ∩ ( B − x 2 )) ≤ max { d ( x , A − x 1 ) , d ( x , B − x 2 ) } ∀ x ∈ B δ (¯ x ), x 1 , x 2 ∈ δ B Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 9 / 34

  16. Transversality X – normed vector space, A , B ⊂ X , x ∈ A ∩ B ¯ Definition (K., 2005; K., Luke, Thao, 2016) { A , B } is transversal at ¯ x if ∃ α, δ > 0 such that α d ( x , ( A − x 1 ) ∩ ( B − x 2 )) ≤ max { d ( x , A − x 1 ) , d ( x , B − x 2 ) } ∀ x ∈ B δ (¯ x ), x 1 , x 2 ∈ δ B tr [ A , B ](¯ x ) := sup { α in the above definition } Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 9 / 34

  17. Transversality X – normed vector space, A , B ⊂ X , x ∈ A ∩ B ¯ Definition (K., 2005; K., Luke, Thao, 2016) { A , B } is transversal at ¯ x if ∃ α, δ > 0 such that α d ( x , ( A − x 1 ) ∩ ( B − x 2 )) ≤ max { d ( x , A − x 1 ) , d ( x , B − x 2 ) } ∀ x ∈ B δ (¯ x ), x 1 , x 2 ∈ δ B tr [ A , B ](¯ x ) := sup { α in the above definition } 0 ≤ tr [ A , B ](¯ x ) ≤ str [ A , B ](¯ x ) Transversality = ⇒ Subtransversality Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 9 / 34

  18. Transversality vs Subtransversality Transversality Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 10 / 34

  19. Transversality vs Subtransversality Transversality Subtransversality Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 10 / 34

  20. Transversality vs Subtransversality Transversality Subtransversality Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 11 / 34

  21. Subtransversality vs Alternating Projections X – Euclidean space, A , B ⊂ X closed and convex, x ∈ A ∩ B ¯ Theorem (Bauschke, Borwein, 1993) { A , B } is subtransversal at ¯ ⇒ x alternating projections converge linearly for any starting point Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 12 / 34

  22. Subtransversality vs Alternating Projections X – Euclidean space, A , B ⊂ X closed and convex, x ∈ A ∩ B ¯ Theorem (Bauschke, Borwein, 1993) { A , B } is subtransversal at ¯ ⇒ x alternating projections converge linearly for any starting point Theorem (Luke, Thao, Teboulle, to appear) Alternating projections converge linearly for any starting point close to ¯ ⇒ { A , B } is subtransversal at ¯ x x Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 12 / 34

  23. Subtransversality vs Alternating Projections Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 13 / 34

  24. Transversality vs Alternating Projections X – Euclidean space, A , B ⊂ X closed, x ∈ A ∩ B ¯ Theorem (Drusvyatskiy, Ioffe, Lewis, 2015) { A , B } is transversal at ¯ ⇒ x alternating projections converge linearly for any starting point close to ¯ x Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 14 / 34

  25. Transversality vs Alternating Projections X – Euclidean space, A , B ⊂ X closed, x ∈ A ∩ B ¯ Theorem (Drusvyatskiy, Ioffe, Lewis, 2015) { A , B } is transversal at ¯ ⇒ x alternating projections converge linearly for any starting point close to ¯ x Lewis & Malick, 2008; Lewis, Luke & Malick, 2009 Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 14 / 34

  26. Outline Transversality/Subtransversality 1 Extremality 2 Dual characterizations of transversality/subtransversality 3 Intrinsic transversality 4 Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 15 / 34

  27. Transversality vs Extremality X – normed vector space, A , B ⊂ X , x ∈ A ∩ B ¯ Definition (K., Mordukhovich, 1980; K., 1981) { A , B } is locally extremal at ¯ x if ∃ δ > 0 such that ∀ ε > 0 ∃ x 1 , x 2 ∈ ε B such that ( A − x 1 ) ∩ ( B − x 2 ) ∩ B δ (¯ x ) = ∅ Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 16 / 34

  28. Transversality vs Extremality X – normed vector space, A , B ⊂ X , x ∈ A ∩ B ¯ Definition (K., Mordukhovich, 1980; K., 1981) { A , B } is locally extremal at ¯ x if ∃ δ > 0 such that ∀ ε > 0 ∃ x 1 , x 2 ∈ ε B such that ( A − x 1 ) ∩ ( B − x 2 ) ∩ B δ (¯ x ) = ∅ Proposition (K., 2005) { A , B } is locally extremal at ¯ ⇒ { A , B } is not transversal at ¯ x x Alexander Kruger (FedUni, Ballarat) Transversality of Pairs of Sets RMIT, 3 March 2017 16 / 34

Recommend


More recommend