transmutation of actinides in
play

Transmutation of Actinides in CANDU Reactors B. Hyland G. Dyck A. - PowerPoint PPT Presentation

Transmutation of Actinides in CANDU Reactors B. Hyland G. Dyck A. Morreale R. Dworschak Outline Introduction to CANDU reactors Motivation for transmutation of actinides Transmutation of actinides in CANDU Group-extracted TRU in


  1. Transmutation of Actinides in CANDU Reactors B. Hyland G. Dyck A. Morreale R. Dworschak

  2. Outline • Introduction to CANDU reactors • Motivation for transmutation of actinides • Transmutation of actinides in CANDU – Group-extracted TRU in MOX – Separated Am/Cm in targets

  3. The CANDU Reactor On-power Fuelling Heavy Water Moderator – Good neutron economy Simple fuel bundle CANDU fuel channel

  4. 37-element bundle

  5. Motivation • Increase capacity of long-term geological disposal • YM final, total cost: $96 billion • Technical capacity limited by decay heat load

  6. What’s Contributing to the Heat Load? FP’s at short times Actinides at long times *Data for Russian VVER B.R. Bergelson, A.S. Gerasimov, and G.V. Tikhomirov

  7. Transmutation Scenarios • Two transmutation scenarios were examined • Group-extracted TRU in MOX • Separated Am/Cm in targets

  8. TRU MOX Scenario LWR, 45 MWd/kg • WIMS-AECL lattice cell calculations Cool 30 years • RFSP full-core calculations Group extraction • 45 MWd/kg exit burnup for MOX MOX

  9. 30 year cooled SNF Initial TRU MOX Compostion, Initial TRU Content, 653 g/bundle g/kg initial TRU Initial TRU Content, 3.3% % by volume Pu-238 +163 13 Pu-239 -77 563 Pu-240 -1.8 201 Pu-241 +65 30 Pu-242 +176 38 Pu Total -39 845 Np Total -52 47 Am-241 -90 100 Am total -64 108 Cm total +3700 0.6 Total MA -45 155 Total TRU -40 1000 Change in actinide composition (%) at discharge burnup

  10. Decay Heat from Actinides MOX 200.0 180.0 Once through PWR without CANDU 160.0 140.0 % decay heat 120.0 100.0 80.0 60.0 40.0 20.0 0.0 10 100 1000 10000 100000 Time (years)

  11. Nuclide Contribution to Heat Load Time Frame of Main Contribution % Difference Nuclide to Heat Load Pu-238 Less than 100 years +163 Cm-244 Less than 100 years +2641 Am-241 Less than 1000 years -90 Pu-239 1000-100,000 years -77 Pu-240 1000-100,000 years -1.8

  12. Full-Core Calculation Input fuel composition Lattice cell calculation: WIMS Cross-sections, Depletion Full-Core Calculation: RFSP Full-core Parameters, Dwell Time, Burnup

  13. Am and Cm Target Channels • 30 target channels Am and Cm in IMF 0.9% Fissile RU

  14. Important Criteria • Support ratio : • % transmutation • Residence time

  15. Fuel Bundle Designs CANFLEX 43 elements 21 elements 24 elements 30 elements

  16. 22 20 Support Ratio, GWe LWR: GWe CANDU 18 16 14 12 10 8 6 4 2 0 0 10 20 30 40 50 60 70 80 90 100 Destruction of Americium (%)

  17. 100 % per Initial Amount of AmCm Total Am + Cm + Pu 90 80 Total Am + Cm 70 60 Am-241 Total Am 50 Total Pu 40 30 20 Total Cm 10 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Residence Time (years) Total Am + Cm + Pu Am + Cm All Am All Cm All Pu Am-241 Am-243 Cm-242 Cm-244 Pu-241 Pu-239 Pu-240 Pu-242

  18. Results Input Exit % Change kg/CANDU kg/CANDU Am 373 112 -70 Cm 9 68 +700 Total Am + 382 180 -53 Cm • 21-element bundle • 26% initial concentration • Support ratio 2.5 GWe LWR : 1 GWe CANDU • Residence time for AmCm = 5.7 years

  19. Full-Core Calculation Input fuel composition Lattice cell calculation: WIMS* Cross-sections, Depletion Full-Core Calculation: RFSP Full-core Parameters, Dwell Time, Burnup * Calculations done with a developmental version of WIMS-AECL

  20. Summary • CANDU reactors have unique features which allow them to effectively transmute transuranics • TRU in MOX – We can burn 40% of TRU – Reduce heat load by 40% at 1000 y • Am/Cm targets – We burn 70% of Am (53% or Am+Cm) – Reduce heat load by 70% at 1000 y • Provide a significant increase in geological repository capacity. • Full-core calculations indicate that both fuel cycles are feasible

  21. 30 year cooled — No Burn 1.E+02 237Np 239Np TotalNp 1.E+01 Thermal Power (W)/kg ITRU 238Pu 239Pu 240Pu 1.E+00 241Pu 242Pu 1.E-01 TotalPu 241Am 243Am 1.E-02 TotalAm 242Cm 244Cm 1.E-03 245Cm TotalCm TotalTRU 1.E-04 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 Time (years)

  22. Decay Heat from Actinides, MOX 1.E+02 237Np Total TRU 239Np TotalNp Once Through LWR 1.E+01 238Pu Thermal Power (W)/kg ITRU 239Pu 240Pu 1.E+00 241Pu 242Pu TotalPu 1.E-01 241Am 243Am TotalAm 1.E-02 242Cm 244Cm 245Cm 1.E-03 TotalCm 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 TotalTRU No Burn Time (years)

  23. The Calculation • WIMS-AECL used to calculate neutron fluxes • ORIGEN-S used for the depletion calculation • MOX: burned to 45 GWd/t • Assumed 3% neutron leakage

  24. MOX, Pu Isotopes 120 100 % per initial TRU 238Pu 239Pu 80 240Pu 60 241Pu 242Pu 40 TotalPu TotalTRU 20 0 0 10 20 30 40 50 Burnup (MWd/kg)

  25. MOX, Minor Actinides 16 14 237Np 241Am 12 % per intial TRU 243Am 10 TotalAm 8 242Cm 244Cm 6 TotalCm 4 Total MA 2 0 0 10 20 30 40 50 Burnup (MWd/kg)

  26. Group Extracted TRU MOX, Cm 3 2.5 % per initial TRU 2 Total Cm 242Cm 1.5 243Cm 244Cm 245Cm 1 0.5 0 0 10 20 30 40 50 Burnup (MWd/kg)

  27. Am Mass Flow 2.5 GWe LWR Decay for 30 years Separate Am, Cm 21 kg/year 27 kg/year 90 kg/year 63 kg/year destroyed

  28. Full-Core Results Time- Refueling NU Fuel Average Ripple Max 6600 7100 7300 Channel Power (kW) Max. Bundle 790 845 935 Power (kW) • Avg. burnup for RU is 12.2 MWd/kg • 3.7 channels/day, 11 bundles/day

Recommend


More recommend