transition form factors and hlbl from dyson schwinger
play

Transition form factors and HLBL from Dyson-Schwinger equations - PowerPoint PPT Presentation

Transition form factors and HLBL from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universitt Gieen June 2018 Together with Gernot Eichmann, Esther Weil, Richard Williams 1 Christian S. Fischer (University of Gieen)


  1. Transition form factors and HLBL 
 from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen June 2018 Together with Gernot Eichmann, Esther Weil, Richard Williams 1 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  2. Overview F(Q,Q’) 1.(Transition-) form factors DSE TFF LMD+V Q 2.Hadronic light by light 2 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  3. Nonperturbative QCD: Complementary approach Quarks and gluons Dyson-Schwinger Equations Lattice simulations Physical quark masses Ab initio Full momentum dependencies Gauge invariant Multi-scale problems feasible Hadrons Effective theories and models ( χ PT, chiral models,...) Dispersive approach Physical degrees of freedom 3 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  4. DSE-approach: truncations [ S ( p )] − 1 = [ − ip / + M ( p 2 )] /Z f ( p 2 ) Rainbow-Ladder (RL): Beyond the rainbow (BRL): backup slides Williams, CF, Heupel, PRD 93 (2016) 034026 CF, Williams, PRL 103 (2009) 122001 4 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  5. (Transition-) Form factors and decays Pion form factor: Pion transition FF Q 2 π π π 0 → e + e − e + e − π 0 → e + e − γ 5 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  6. (Transition-) Form factors and decays Pion form factor: Pion transition FF Q 2 π π π 0 → e + e − e + e − π 0 → e + e − γ 5 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  7. (Transition-) Form factors and decays Pion form factor: Pion transition FF Q 2 π π π 0 → e + e − e + e − π 0 → e + e − γ 5 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  8. (Transition-) Form factors and decays Pion form factor: Pion transition FF Q 2 π π π 0 → e + e − e + e − π 0 → e + e − γ 5 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  9. Quark mass and pion BSE π [ S ( p )] − 1 = [ − ip / + M ( p 2 )] /Z f ( p 2 ) Dynamical mass: M ≈ 350 MeV 0.4 Lattice: quenched Lattice: unquenched (N f =2+1) h ¯ DSE: quenched ΨΨ i ⇡ (250 MeV) 3 0.3 DSE: unquenched (N f =2) M(p) [GeV] GMOR 0.2 0.1 0.0 0.0 1.0 2.0 3.0 4.0 p [GeV] CF, Nickel, Williams, EPJ C 60 (2009) 47 6 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  10. Quark mass and pion BSE π [ S ( p )] − 1 = [ − ip / + M ( p 2 )] /Z f ( p 2 ) Dynamical mass: M ≈ 350 MeV 0.4 Lattice: quenched Lattice: unquenched (N f =2+1) h ¯ DSE: quenched ΨΨ i ⇡ (250 MeV) 3 0.3 DSE: unquenched (N f =2) M(p) [GeV] GMOR NJL 0.2 0.1 0.0 0.0 1.0 2.0 3.0 4.0 p [GeV] CF, Nickel, Williams, EPJ C 60 (2009) 47 6 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  11. Quark-photon vertex and dynamical vector mesons Basis: k { γ µ , Q µ , k µ } ⊗ { 1 , Q / , k / , Q / k / } Q 12 elements X λ i L µ X τ i T µ Γ µ ( k, Q ) = Γ µ BC ( k, Q ) + Γ µ T ( k, Q ) = i + i i =1 , 4 i =1 , 8 gauge part transverse part ‘Ball-Chiu’ vector-mesons Ball and Chiu, PRD 22 (1980) 2542. WTI: Q µ Γ µ ( k, Q ) = S − 1 ( k + Q/ 2) − S − 1 ( k − Q/ 2) ✓ EM gauge invariance satisfied Vector mesons: dynamically generated ✓ 7 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  12. Pion form factor 2 ( ) F Q not timelike: spacelike: ¯ e + e − → X ¯ + accessible e e N N e e − X → e − X N e N − X → − − → ’’ charge, ’ magnetic moment,... radius 2 0 2 Q 4 M − Pion form factor: Q 2 π π Krassnigg, Schladming 2011; Maris, Tandy NPPS 161, 2006 Vector meson poles dynamically generated! : backup slides ρ → ππ Williams, arXiv:1804.11161 8 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  13. Pion form factor 2 ( ) F Q not timelike: spacelike: ¯ e + e − → X ¯ + accessible e e N N e e − X → e − X N e N − X → − − → ’’ charge, ’ magnetic moment,... radius 2 0 2 Q 4 M − Pion form factor: Q 2 excluded region π π Krassnigg, Schladming 2011; Maris, Tandy NPPS 161, 2006 Vector meson poles dynamically generated! : backup slides ρ → ππ Williams, arXiv:1804.11161 8 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  14. Pion transition form factor Q 2 Q 0 2 η + = Q 2 + Q 0 2 2 Maris, Tandy, Phys. Rev. C 65 045211 (2002) Eichmann, CF, Weil and Williams, PLB 774 (2017) 425 9 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  15. <latexit sha1_base64="0H8KtlL0Lq2K8WGbMfpe+Jq+zUo=">AEe3icfZPdbtMwFIC9tcAofx1chOogAEhSyoquEGaSiW4GKJFdJu0dJXjuIkVx4lsp1uJ8hY8DbfwEjwMEm6T0jZtOVako3M+nx/nHCemREjT/L2zW6leu35j72bt1u07d+/V9+fiCjhCPdRCN+5kCBKWG4L4mk+CzmGIYOxadO8H7qPx1jLkjEvspJjAch9BgZEQSlMg3rxqX29J120Ltovuw9u2g+P2zadu3b3PYqty3cw3rDNMyZaOuKVSgNUEh3uF9p2W6EkhAziSgU4twyYzlIZcEUZzV7ETgGKIAevjcHZNYMBhiMUivZr1l2hPld7VRxNXHpDazLl9KYSjEJHQUGULpi7Jvatzo8ziMfYKETqHEVyrEai2JHL0dpITFicQM5XWMEqrJSJu+o+YSjpGkE6VAxInqRkM+5BJ9do1m+FLFIUhZG5qx0I17mdpbD+ankNbz1aBoACbUC3ALo5sAnpFEhnO9L1C8b2odT+E6tXcL3tyPE81LGaNRcuYTXbxSM1jbM/lXYgDz5wjFmWcs/JUlM3jZuZutUmyZ4AenWNJyRoerbDne5gQFX7CblYpSUzBHPhGXEc+Xs6glzPX+YvyoyzwmwKE8JFNjUxTMIy4eWNF9DGPNGils+UjPEcUotmldqXTlpGpZpWL3XjaN2sXJ74CF4DA6ABd6AI/ARdEfIPAd/A/wa/Kn2qj+qKq5+juTnHnAViRausvqMx+Ug=</latexit> <latexit sha1_base64="0H8KtlL0Lq2K8WGbMfpe+Jq+zUo=">AEe3icfZPdbtMwFIC9tcAofx1chOogAEhSyoquEGaSiW4GKJFdJu0dJXjuIkVx4lsp1uJ8hY8DbfwEjwMEm6T0jZtOVako3M+nx/nHCemREjT/L2zW6leu35j72bt1u07d+/V9+fiCjhCPdRCN+5kCBKWG4L4mk+CzmGIYOxadO8H7qPx1jLkjEvspJjAch9BgZEQSlMg3rxqX29J120Ltovuw9u2g+P2zadu3b3PYqty3cw3rDNMyZaOuKVSgNUEh3uF9p2W6EkhAziSgU4twyYzlIZcEUZzV7ETgGKIAevjcHZNYMBhiMUivZr1l2hPld7VRxNXHpDazLl9KYSjEJHQUGULpi7Jvatzo8ziMfYKETqHEVyrEai2JHL0dpITFicQM5XWMEqrJSJu+o+YSjpGkE6VAxInqRkM+5BJ9do1m+FLFIUhZG5qx0I17mdpbD+ankNbz1aBoACbUC3ALo5sAnpFEhnO9L1C8b2odT+E6tXcL3tyPE81LGaNRcuYTXbxSM1jbM/lXYgDz5wjFmWcs/JUlM3jZuZutUmyZ4AenWNJyRoerbDne5gQFX7CblYpSUzBHPhGXEc+Xs6glzPX+YvyoyzwmwKE8JFNjUxTMIy4eWNF9DGPNGils+UjPEcUotmldqXTlpGpZpWL3XjaN2sXJ74CF4DA6ABd6AI/ARdEfIPAd/A/wa/Kn2qj+qKq5+juTnHnAViRausvqMx+Ug=</latexit> <latexit sha1_base64="0H8KtlL0Lq2K8WGbMfpe+Jq+zUo=">AEe3icfZPdbtMwFIC9tcAofx1chOogAEhSyoquEGaSiW4GKJFdJu0dJXjuIkVx4lsp1uJ8hY8DbfwEjwMEm6T0jZtOVako3M+nx/nHCemREjT/L2zW6leu35j72bt1u07d+/V9+fiCjhCPdRCN+5kCBKWG4L4mk+CzmGIYOxadO8H7qPx1jLkjEvspJjAch9BgZEQSlMg3rxqX29J120Ltovuw9u2g+P2zadu3b3PYqty3cw3rDNMyZaOuKVSgNUEh3uF9p2W6EkhAziSgU4twyYzlIZcEUZzV7ETgGKIAevjcHZNYMBhiMUivZr1l2hPld7VRxNXHpDazLl9KYSjEJHQUGULpi7Jvatzo8ziMfYKETqHEVyrEai2JHL0dpITFicQM5XWMEqrJSJu+o+YSjpGkE6VAxInqRkM+5BJ9do1m+FLFIUhZG5qx0I17mdpbD+ankNbz1aBoACbUC3ALo5sAnpFEhnO9L1C8b2odT+E6tXcL3tyPE81LGaNRcuYTXbxSM1jbM/lXYgDz5wjFmWcs/JUlM3jZuZutUmyZ4AenWNJyRoerbDne5gQFX7CblYpSUzBHPhGXEc+Xs6glzPX+YvyoyzwmwKE8JFNjUxTMIy4eWNF9DGPNGils+UjPEcUotmldqXTlpGpZpWL3XjaN2sXJ74CF4DA6ABd6AI/ARdEfIPAd/A/wa/Kn2qj+qKq5+juTnHnAViRausvqMx+Ug=</latexit> <latexit sha1_base64="0H8KtlL0Lq2K8WGbMfpe+Jq+zUo=">AEe3icfZPdbtMwFIC9tcAofx1chOogAEhSyoquEGaSiW4GKJFdJu0dJXjuIkVx4lsp1uJ8hY8DbfwEjwMEm6T0jZtOVako3M+nx/nHCemREjT/L2zW6leu35j72bt1u07d+/V9+fiCjhCPdRCN+5kCBKWG4L4mk+CzmGIYOxadO8H7qPx1jLkjEvspJjAch9BgZEQSlMg3rxqX29J120Ltovuw9u2g+P2zadu3b3PYqty3cw3rDNMyZaOuKVSgNUEh3uF9p2W6EkhAziSgU4twyYzlIZcEUZzV7ETgGKIAevjcHZNYMBhiMUivZr1l2hPld7VRxNXHpDazLl9KYSjEJHQUGULpi7Jvatzo8ziMfYKETqHEVyrEai2JHL0dpITFicQM5XWMEqrJSJu+o+YSjpGkE6VAxInqRkM+5BJ9do1m+FLFIUhZG5qx0I17mdpbD+ankNbz1aBoACbUC3ALo5sAnpFEhnO9L1C8b2odT+E6tXcL3tyPE81LGaNRcuYTXbxSM1jbM/lXYgDz5wjFmWcs/JUlM3jZuZutUmyZ4AenWNJyRoerbDne5gQFX7CblYpSUzBHPhGXEc+Xs6glzPX+YvyoyzwmwKE8JFNjUxTMIy4eWNF9DGPNGils+UjPEcUotmldqXTlpGpZpWL3XjaN2sXJ74CF4DA6ABd6AI/ARdEfIPAd/A/wa/Kn2qj+qKq5+juTnHnAViRausvqMx+Ug=</latexit> Pion transition form factor F(Q,Q’) w = ( Q 2 + Q 0 2 ) / 2 z = ( Q 2 − Q 0 2 ) / ( Q 2 + Q 0 2 ) DSE TFF LMD+V 5 Q Eichmann, CF, Weil and Williams, PLB 774 (2017) 425 agrees with LMD+V at small Q correct symm./asymm. UV limits no ‘wiggles’ at large Q in contrast to LMD+V 10 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  16. Scalar + axial vector transition from factors 11 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  17. Rare pion decay ◆ 2 s B ( π 0 → e + e − ) ✓ m α em 1 − 4 m 2 | A ( − m 2 π / 4) | 2 = 2 B ( π 0 → γγ ) π m π m 2 π Usual: dispersive approach DSE: direct calculation same result as everybody else discrepancy with exp. remains Weil, Eichmann, CF and Williams, PRD96 (2017) no.1, 014021 12 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  18. More rare decays π 0 → e + e − γ π 0 → e + e − e + e − Weil, Eichmann, CF and Williams, Phys.Rev. D96 (2017) no.1, 014021 13 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  19. Overview F(Q,Q’) 1.(Transition-) form factors DSE TFF LMD+V Q 2.Hadronic light by light 14 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

Recommend


More recommend