towards bordered heegaard floer homology
play

Towards bordered Heegaard Floer homology R. Lipshitz, P. Ozsv ath - PowerPoint PPT Presentation

Towards bordered Heegaard Floer homology R. Lipshitz, P. Ozsv ath and D. Thurston June 10, 2008 R. Lipshitz, P. Ozsv ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 1 / 50 1 Review of Heegaard Floer 2 Basic


  1. So... Let Z be a pointed matched circle, for a genus k surface. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 12 / 50

  2. So... Let Z be a pointed matched circle, for a genus k surface. Primitive idempotents of A ( Z ) correspond to k -element subsets I of the 2 k pairs in Z . We draw them like this: R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 12 / 50

  3. A pair ( I , ρ ), where ρ is a Reeb chord in Z \ z starting at I specifies an algebra element a ( I , ρ ). We draw them like this: From: R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 13 / 50

  4. More generally, given ( I , ρ ) where ρ = { ρ 1 , . . . , ρ ℓ } is a set of Reeb chords starting at I , with: i � = j implies ρ i and ρ j start and end on different pairs. { starting points of ρ i ’s } ⊂ I . specifies an algebra element a ( I , ρ ). From: These generate A ( Z ) over F 2 . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 14 / 50

  5. That is, A ( Z ) is the subalgebra of the algebra of k-strand, upward-veering flattened braids on 4 k positions where: no two start or end on the same pair Not allowed. Algebra elements are fixed by “horizontal line swapping”. = + R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 15 / 50

  6. Multiplication... ...is concatenation if sensible, and zero otherwise. = R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 16 / 50

  7. Multiplication... ...is concatenation if sensible, and zero otherwise. = = R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 16 / 50

  8. Multiplication... ...is concatenation if sensible, and zero otherwise. = = = 0 R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 16 / 50

  9. Double crossings We impose the relation ( double crossing ) = 0 . e.g., = =0 R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 17 / 50

  10. The differential There is a differential d by � d ( a ) = smooth one crossing of a . e.g., d R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 18 / 50

  11. Algebra – summary The algebra is generated by the Reeb chords in Z , with certain relations. e.g., R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 19 / 50

  12. Algebra – summary The algebra is generated by the Reeb chords in Z , with certain relations. e.g., Multiplying consecutive Reeb chords concatenates them. Far apart Reeb chords commute. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 19 / 50

  13. Algebra – summary The algebra is generated by the Reeb chords in Z , with certain relations. e.g., Multiplying consecutive Reeb chords concatenates them. Far apart Reeb chords commute. The algebra is finite-dimensional over F 2 , and has a nice description in terms of flattened braids. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 19 / 50

  14. Gradings One can prove there is no Z -grading on A . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 20 / 50

  15. Gradings One can prove there is no Z -grading on A . This bothered us. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 20 / 50

  16. Gradings One can prove there is no Z -grading on A . This bothered us. Tim Perutz suggested we think about the geometric grading on HM. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 20 / 50

  17. Gradings One can prove there is no Z -grading on A . This bothered us. Tim Perutz suggested we think about the geometric grading on HM. It was a good suggestion. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 20 / 50

  18. HM( Y ) is graded by homotopy classes of nonvanishing vector fields on Y . So A ( F ) should be graded by homotopy classes of nonvanishing vector fields v on F × [0 , 1] such that v | F × ∂ [0 , 1] = v 0 for some given v 0 . (Think of F × [0 , 1] as a collar of ∂ Y .) R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 21 / 50

  19. HM( Y ) is graded by homotopy classes of nonvanishing vector fields on Y . So A ( F ) should be graded by homotopy classes of nonvanishing vector fields v on F × [0 , 1] such that v | F × ∂ [0 , 1] = v 0 for some given v 0 . (Think of F × [0 , 1] as a collar of ∂ Y .) This is a group G under concatenation in [0 , 1]. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 21 / 50

  20. It is easy to see that G ∼ = [Σ F , S 2 ]. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 22 / 50

  21. It is easy to see that G ∼ = [Σ F , S 2 ]. It follows that G is a Z -central extension of H 1 ( F ), 0 → Z → G → H 1 ( F ) → 0 . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 22 / 50

  22. G is not commutative, but has a central element λ . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 23 / 50

  23. G is not commutative, but has a central element λ . There is a map gr : { gens. of A ( F ) } → G such that: gr( a · b ) = gr( a ) · gr( b ) gr( d ( a )) = λ · gr( a ) . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 23 / 50

  24. G is not commutative, but has a central element λ . There is a map gr : { gens. of A ( F ) } → G such that: gr( a · b ) = gr( a ) · gr( b ) gr( d ( a )) = λ · gr( a ) . The modules � CFD and � CFA are graded by G -sets. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 23 / 50

  25. G is not commutative, but has a central element λ . There is a map gr : { gens. of A ( F ) } → G such that: gr( a · b ) = gr( a ) · gr( b ) gr( d ( a )) = λ · gr( a ) . The modules � CFD and � CFA are graded by G -sets. Note: in the end, we define these gradings combinatorially, not geometrically. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 23 / 50

  26. The cylindrical setting for classical � CF: Fix an ordinary H.D. (Σ g , α , β , z ). (Here, α = { α 1 , . . . , α g } .) The chain complex � CF is generated over F 2 by g -tuples { x i ∈ α σ ( i ) ∩ β i } ⊂ α ∩ β . ( σ ∈ S g is a permutation.) (cf. T α ∩ T β ⊂ Sym g (Σ).) R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 24 / 50

  27. The cylindrical setting for classical � CF: Fix an ordinary H.D. (Σ g , α , β , z ). (Here, α = { α 1 , . . . , α g } .) The chain complex � CF is generated over F 2 by g -tuples { x i ∈ α σ ( i ) ∩ β i } ⊂ α ∩ β . ( σ ∈ S g is a permutation.) The differential counts embedded holomorphic maps ( S , ∂ S ) → (Σ × [0 , 1] × R , ( α × 1 × R ) ∪ ( β × 0 × R )) asymptotic to x × [0 , 1] at −∞ and y × [0 , 1] at + ∞ . For � CF , curves may not intersect { z } × [0 , 1] × R . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 24 / 50

  28. A useless schematic of a curve in Σ × [0 , 1] × R . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 25 / 50

  29. For (Σ , α , β , z ) a bordered Heegaard diagram, view ∂ Σ as a cylindrical end, p . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 26 / 50

  30. For (Σ , α , β , z ) a bordered Heegaard diagram, view ∂ Σ as a cylindrical end, p . Maps u : ( S , ∂ S ) → (Σ × [0 , 1] × R , ( α × 1 × R ) ∪ ( β × 0 × R )) have asymptotics at + ∞ , −∞ and the puncture p , i.e., east ∞ . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 26 / 50

  31. For (Σ , α , β , z ) a bordered Heegaard diagram, view ∂ Σ as a cylindrical end, p . Maps u : ( S , ∂ S ) → (Σ × [0 , 1] × R , ( α × 1 × R ) ∪ ( β × 0 × R )) have asymptotics at + ∞ , −∞ and the puncture p , i.e., east ∞ . The e ∞ asymptotics are Reeb chords ρ i × (1 , t i ). R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 26 / 50

  32. For (Σ , α , β , z ) a bordered Heegaard diagram, view ∂ Σ as a cylindrical end, p . Maps u : ( S , ∂ S ) → (Σ × [0 , 1] × R , ( α × 1 × R ) ∪ ( β × 0 × R )) have asymptotics at + ∞ , −∞ and the puncture p , i.e., east ∞ . The e ∞ asymptotics are Reeb chords ρ i × (1 , t i ). The asymptotics ρ i 1 , . . . , ρ i ℓ of u inherit a partial order, by R -coordinate. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 26 / 50

  33. Another useless schematic of a curve in Σ × [0 , 1] × R . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 27 / 50

  34. Generators of � CFD... Fix a bordered Heegaard diagram (Σ g , α , β , z ) � CFD(Σ) is generated by g -tuples x = { x i } with: one x i on each β -circle one x i on each α -circle no two x i on the same α -arc. x x R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 28 / 50

  35. Generators of � CFD... Fix a bordered Heegaard diagram (Σ g , α , β , z ) � CFD(Σ) is generated by g -tuples x = { x i } with: one x i on each β -circle one x i on each α -circle no two x i on the same α -arc. y y R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 28 / 50

  36. ...and associated idempotents. To x , associate the idempotent I ( x ), the α -arcs not occupied by x . x As a left A -module, � CFD = ⊕ x A I ( x ) . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 29 / 50

  37. ...and associated idempotents. To x , associate the idempotent I ( x ), the α -arcs not occupied by x . As a left A -module, � CFD = ⊕ x A I ( x ) . So, if I is a primitive idempotent, I x = 0 if I � = I ( x ) and I ( x ) x = x . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 29 / 50

  38. The differential on � CFD. � � d ( x ) = (# M ( x , y ; ρ 1 , . . . , ρ n )) a ( ρ 1 , I ( x )) · · · a ( ρ n , I n ) y . y ( ρ 1 ,...,ρ n ) where M ( x , y ; ρ 1 , . . . , ρ n ) consists of holomorphic curves asymptotic to x at −∞ y at + ∞ ρ 1 , . . . , ρ n at e ∞ . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 30 / 50

  39. Example D1: a solid torus. 2 3 x z 1 a b d ( a ) = b + ρ 3 x d ( x ) = ρ 2 b d ( b ) = 0 . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 31 / 50

  40. Example D2: same torus, different diagram. 2 3 x z 1 d ( x ) = ρ 2 ρ 3 x = ρ 23 x . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 32 / 50

  41. � � Comparison of the two examples. First chain complex: a � � 1 � ρ 3 � � � � ρ 2 � � b x Second chain complex: ρ 23 � x x R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 33 / 50

  42. � � Comparison of the two examples. First chain complex: a � � 1 � ρ 3 � � � � ρ 2 � � b x Second chain complex: ρ 23 � x x They’re homotopy equivalent! R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 33 / 50

  43. � � Comparison of the two examples. First chain complex: a � � 1 � ρ 3 � � � � ρ 2 � � b x Second chain complex: ρ 23 � x x They’re homotopy equivalent!A relief, since Theorem If (Σ , α , β , z ) and (Σ , α ′ , β ′ , z ′ ) are pointed bordered Heegaard diagrams for the same bordered Y 3 then � CFD(Σ) is homotopy equivalent to � CFD(Σ ′ ) . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 33 / 50

  44. Generators and idempotents of � CFA. Fix a bordered Heegaard diagram (Σ g , α , β , z ) CFA(Σ) is generated by the same set as � � CFD: g -tuples x = { x i } with: one x i on each β -circle one x i on each α -circle no two x i on the same α -arc. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 34 / 50

  45. Generators and idempotents of � CFA. Fix a bordered Heegaard diagram (Σ g , α , β , z ) CFA(Σ) is generated by the same set as � � CFD: g -tuples x = { x i } with: one x i on each β -circle one x i on each α -circle no two x i on the same α -arc. Over F 2 , � CFA = ⊕ x F 2 . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 34 / 50

  46. Generators and idempotents of � CFA. Fix a bordered Heegaard diagram (Σ g , α , β , z ) CFA(Σ) is generated by the same set as � � CFD: g -tuples x = { x i } with: one x i on each β -circle one x i on each α -circle no two x i on the same α -arc. Over F 2 , � CFA = ⊕ x F 2 . This is much smaller than � CFD. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 34 / 50

  47. The differential on � CFA... ...counts only holomorphic curves contained in a compact subset of Σ, i.e., with no asymptotics at e ∞ . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 35 / 50

  48. The module structure on � CFA To x , associate the idempotent J ( x ), the α -arcs occupied by x (opposite from � CFD). R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 36 / 50

  49. The module structure on � CFA To x , associate the idempotent J ( x ), the α -arcs occupied by x (opposite from � CFD). For I a primitive idempotent, define � x if I = J ( x ) x I = 0 if I � = J ( x ) R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 36 / 50

  50. The module structure on � CFA To x , associate the idempotent J ( x ), the α -arcs occupied by x (opposite from � CFD). For I a primitive idempotent, define � x if I = J ( x ) x I = 0 if I � = J ( x ) Given a set ρ of Reeb chords, define � x · a ( J ( x ) , ρ ) = (# M ( x , y ; ρ )) y y where M ( x , y ; ρ ) consists of holomorphic curves asymptotic to x at −∞ . y at + ∞ . ρ at e ∞ , all at the same height. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 36 / 50

  51. A local example of the module structure on � CFA. Consider the following piece of a Heegaard diagram, with generators { r , x } , { s , x } , { r , y } , { s , y } . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 37 / 50

  52. A local example of the module structure on � CFA. Consider the following piece of a Heegaard diagram, with generators { r , x } , { s , x } , { r , y } , { s , y } . The nonzero products are: { r , x } ρ 1 = { s , x } , { r , y } ρ 1 = { s , y } , { r , x } ρ 3 = { r , y } , { s , x } ρ 3 = { s , y } , { r , x } ( ρ 1 ρ 3 ) = { s , y } . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 37 / 50

  53. A local example of the module structure on � CFA. Consider the following piece of a Heegaard diagram, with generators { r , x } , { s , x } , { r , y } , { s , y } . The nonzero products are: { r , x } ρ 1 = { s , x } , { r , y } ρ 1 = { s , y } , { r , x } ρ 3 = { r , y } , { s , x } ρ 3 = { s , y } , { r , x } ( ρ 1 ρ 3 ) = { s , y } . Example: { r , x } ρ 1 = { s , x } comes from this domain. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 37 / 50

  54. A local example of the module structure on � CFA. Consider the following piece of a Heegaard diagram, with generators { r , x } , { s , x } , { r , y } , { s , y } . The nonzero products are: { r , x } ρ 1 = { s , x } , { r , y } ρ 1 = { s , y } , { r , x } ρ 3 = { r , y } , { s , x } ρ 3 = { s , y } , { r , x } ( ρ 1 ρ 3 ) = { s , y } . Example: { r , x } ρ 3 = { r , y } comes from this domain. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 37 / 50

  55. A local example of the module structure on � CFA. Consider the following piece of a Heegaard diagram, with generators { r , x } , { s , x } , { r , y } , { s , y } . The nonzero products are: { r , x } ρ 1 = { s , x } , { r , y } ρ 1 = { s , y } , { r , x } ρ 3 = { r , y } , { s , x } ρ 3 = { s , y } , { r , x } ( ρ 1 ρ 3 ) = { s , y } . Example: { r , x } ( ρ 1 ρ 3 ) = { s , y } comes from this domain. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 37 / 50

  56. Example A1: a solid torus. 2 1 x z 3 a b d ( a ) = b a ρ 1 = x a ρ 12 = b x ρ 2 = b . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 38 / 50

  57. Example A1: a solid torus. 2 1 x z 3 a b d ( a ) = b a ρ 1 = x a ρ 12 = b x ρ 2 = b . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 38 / 50

  58. Example A1: a solid torus. 2 1 x z 3 a b d ( a ) = b a ρ 1 = x a ρ 12 = b x ρ 2 = b . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 38 / 50

  59. Example A1: a solid torus. 2 1 x z 3 a b d ( a ) = b a ρ 1 = x a ρ 12 = b x ρ 2 = b . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 38 / 50

  60. Example A1: a solid torus. 2 1 x z 3 a b d ( a ) = b a ρ 1 = x a ρ 12 = b x ρ 2 = b . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 38 / 50

  61. Why associativity should hold... ( x · ρ i ) · ρ j counts curves with ρ i and ρ j infinitely far apart. x · ( ρ i · ρ j ) counts curves with ρ i and ρ j at the same height. These are ends of a 1-dimensional moduli space, with height between ρ i and ρ j varying. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 39 / 50

  62. The local model again. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 40 / 50

  63. ...and why it doesn’t. But this moduli space might have other ends: broken flows with ρ 1 and ρ 2 at a fixed nonzero height. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 41 / 50

  64. ...and why it doesn’t. But this moduli space might have other ends: broken flows with ρ 1 and ρ 2 at a fixed nonzero height. These moduli spaces – M ( x , y ; ( ρ 1 , ρ 2 )) – measure failure of associativity. So... R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 41 / 50

  65. Higher A ∞ -operations Define � m n +1 ( x , a ( ρ 1 ) , . . . , a ( ρ n )) = (# M ( x , y ; ( ρ 1 , . . . , ρ n ))) y y where M ( x , y ; ( ρ 1 , . . . , ρ n )) consists of holomorphic curves asymptotic to x at −∞ . y at + ∞ . ρ 1 all at one height at e ∞ , ρ 2 at some other (higher) height at e ∞ , and so on. R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 42 / 50

  66. Example A2: same torus, different diagram. 2 1 x z 3 m 3 ( x , ρ 2 , ρ 1 ) = x m 4 ( x , ρ 2 , ρ 12 , ρ 1 ) = x m 5 ( x , ρ 2 , ρ 12 , ρ 12 , ρ 1 ) = x . . . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 43 / 50

  67. � � Comparison of the two examples. First chain complex: a � � � � � � 1+ ρ 12 � m 2 ( · ,ρ 1 ) � � � � � � � � m 2 ( · ,ρ 2 ) � � b x Second chain complex: m 3 ( · ,ρ 2 ,ρ 1 )+ m 4 ( · ,ρ 2 ,ρ 12 ,ρ 1 )+ ... � x x R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 44 / 50

  68. � � Comparison of the two examples. First chain complex: a � � � � � � 1+ ρ 12 � m 2 ( · ,ρ 1 ) � � � � � � � � m 2 ( · ,ρ 2 ) � � b x Second chain complex: m 3 ( · ,ρ 2 ,ρ 1 )+ m 4 ( · ,ρ 2 ,ρ 12 ,ρ 1 )+ ... � x x They’re A ∞ homotopy equivalent (exercise). R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 44 / 50

  69. � � Comparison of the two examples. First chain complex: a � � � � � � 1+ ρ 12 � m 2 ( · ,ρ 1 ) � � � � � � � � m 2 ( · ,ρ 2 ) � � b x Second chain complex: m 3 ( · ,ρ 2 ,ρ 1 )+ m 4 ( · ,ρ 2 ,ρ 12 ,ρ 1 )+ ... � x x They’re A ∞ homotopy equivalent (exercise). Suggestive remark: (1 + ρ 12 ) − 1 “=” 1 + ρ 12 + ρ 12 , ρ 12 + . . . ρ 2 (1 + ρ 12 ) − 1 ρ 1 “=” ρ 2 , ρ 1 + ρ 2 , ρ 12 , ρ 1 + . . . . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 44 / 50

  70. Again, that’s a relief, since: Theorem If (Σ , α , β , z ) and (Σ , α ′ , β ′ , z ′ ) are pointed bordered Heegaard diagrams for the same bordered Y 3 then � CFA(Σ) is A ∞ -homotopy equivalent to � CFA(Σ ′ ) . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 45 / 50

  71. The pairing theorem Recall: Theorem If ∂ Y 1 = F = − ∂ Y 2 then CF( Y 1 ∪ ∂ Y 2 ) ≃ � � ⊗ A ( F ) � CFA( Y 1 ) � CFD( Y 2 ) . R. Lipshitz, P. Ozsv´ ath and D. Thurston ()Towards bordered Heegaard Floer homology June 10, 2008 46 / 50

Recommend


More recommend