topographic organization of receptive fields in recsom or
play

Topographic Organization of Receptive Fields in RecSOM or RecSOM - PowerPoint PPT Presentation

Topographic Organization of Receptive Fields in RecSOM or RecSOM as nonlinear IFS Peter Ti no University of Birmingham, UK Igor Farka s Slovak University of Technology, Slovakia Jort van Mourik NCRG, Aston University, UK Receptive


  1. Topographic Organization of Receptive Fields in RecSOM or RecSOM as nonlinear IFS Peter Tiˇ no University of Birmingham, UK Igor Farkaˇ s Slovak University of Technology, Slovakia Jort van Mourik NCRG, Aston University, UK

  2. Receptive fields in RecSOM Some motivations ◗ Most approaches to topographic map formation operate on the assumption that the data points are members of a finite- dimensional vector space of a fixed dimension. ◗ Recently, there has been an outburst of interest in extending topographic maps to more general data structures, such as se- quences or trees. ◗ Modified versions of SOM that have enjoyed a great deal of interest equip SOM with additional feed-back connections that allow for natural processing of recursive data types. ◗ No prior notion of metric on the structured data space is im- posed, instead, the similarity measure on structures evolves through parameter modification of the feedback mechanism and recursive comparison of constituent parts of the structured data. P. Tiˇ no, I. Farkaˇ s and J. van Mourik 1

  3. Receptive fields in RecSOM Motivations cont’d ◗ Typical examples: Temporal Kohonen Map (Chappell, 1993), recurrent SOM (Koskela, 1998), feedback SOM (Horio, 2001), recursive SOM (Voegtlin, 2002), merge SOM (Strickert, 2003) and SOM for structured data (Hagenbuchner, 2003) ◗ At present, there is no general consensus as to how best to process sequences with SOMs. ◗ Representational capabilities of the models are hardly under- stood. ◗ The internal representation of structures within the models is unclear. ◗ First major theoretical study within a unifying framework in (Hammer, 2004). P. Tiˇ no, I. Farkaˇ s and J. van Mourik 2

  4. Receptive fields in RecSOM Recursive Self-Organizing Map - RecSOM map at time t c i w i s(t) map at time (t−1) P. Tiˇ no, I. Farkaˇ s and J. van Mourik 3

  5. Receptive fields in RecSOM RecSOM - weights Each neuron i ∈ { 1 , 2 , ..., N } in the map has two weight vectors associated with it: • w i ∈ R n – linked with an n -dim input s ( t ) feeding the network at time t • c i ∈ R N – linked with the context y ( t − 1) = ( y 1 ( t − 1) , y 2 ( t − 1) , ..., y N ( t − 1)) containing map activations y i ( t − 1) from the previous time step. P. Tiˇ no, I. Farkaˇ s and J. van Mourik 4

  6. Receptive fields in RecSOM RecSOM - neuron activations The output of a unit i at time t is computed as (1) y i ( t ) = exp( − d i ( t )) , where d i ( t ) = α · � s ( t ) − w i � 2 + β · � y ( t − 1) − c i � 2 (2) α > 0 and β > 0 are model parameters that respectively influence the effect of the input and the context upon neuron’s profile. P. Tiˇ no, I. Farkaˇ s and J. van Mourik 5

  7. Receptive fields in RecSOM RecSOM - learning The weight vectors are updated using the same form of learning rule ∆ w i = γ · h ik · ( s ( t ) − w i ) , (3) ∆ c i = γ · h ik · ( y ( t − 1) − c i ) , (4) k is an index of the best matching unit at time t , k = argmin d i ( t ) = argmax y i ( t ) , i ∈{ 1 , 2 ,...,N } i ∈{ 1 , 2 ,...,N } γ > 0 is the learning rate, h ik is a (Gaussian) neighborhood func- tion. P. Tiˇ no, I. Farkaˇ s and J. van Mourik 6

  8. Receptive fields in RecSOM RecSOM - fixed-input dynamics Under a fixed input vector s ∈ R n , the time evolution becomes d i ( t + 1) = α · � s − w i � 2 + β · � y ( t ) − c i � 2 . (5) After applying a one-to-one coordinate transformation y i = e − d i , y i ( t + 1) = e − α � s − w i � 2 · e − β � y ( t ) − c i � 2 , (6) where � e − d 1 ( t ) , e − d 2 ( t ) , ..., e − d N ( t ) � y ( t ) = ( y 1 ( t ) , y 2 ( t ) , ..., y N ( t )) = . P. Tiˇ no, I. Farkaˇ s and J. van Mourik 7

  9. Receptive fields in RecSOM RecSOM - fixed-input dynamics cont’d Gaussian kernel of inverse variance η > 0 , acting on R N : for any u , v ∈ R N , G η ( u , v ) = e − η � u − v � 2 . (7) The fixed-input dynamics written in a vector form: � � y ( t + 1) = Fs ( y ( t )) = F s , 1 ( y ( t )) , ..., F s ,N ( y ( t )) (8) , where F s ,i ( y ) = G α ( s , w i ) · G β ( y , c i ) , i = 1 , 2 , ..., N. (9) P. Tiˇ no, I. Farkaˇ s and J. van Mourik 8

  10. Receptive fields in RecSOM RecSOM - Contractive IFS Study the conditions under which the map Fs becomes a con- traction. Then, by the Banach Fixed Point theorem, the autonomous Rec- SOM dynamics y ( t + 1) = Fs ( y ( t )) will be dominated by a unique attractive fixed point ys = Fs ( ys ) . A mapping F : R N → R N is said to be a contraction with contrac- tion coefficient ρ ∈ [0 , 1) , if for any y , y ′ ∈ R N , � F ( y ) − F ( y ′ ) � ≤ ρ · � y − y ′ � . (10) F is a contraction if there exists ρ ∈ [0 , 1) so that F is a contraction with contraction coefficient ρ . P. Tiˇ no, I. Farkaˇ s and J. van Mourik 9

  11. Receptive fields in RecSOM Contractive IFS - Theorem Collection of activations coming from the feed-forward part of RecSOM: G α ( s ) = ( G α ( s , w 1 ) , G α ( s , w 2 ) , ..., G α ( s , w N )) . (11) Theorem: Consider an input s ∈ R n . If for some ρ ∈ [0 , 1) , β ≤ ρ 2 e 2 � G α ( s ) � − 2 , (12) then the mapping Fs is a contraction with contraction coefficient ρ . P. Tiˇ no, I. Farkaˇ s and J. van Mourik 10

  12. Receptive fields in RecSOM Theorem - Proof The proof follows the worst case analysis of the distances � Fs ( y ) − Fs ( y ′ ) � under the constraint � y − y ′ � = δ : � Fs ( y ) − Fs ( y ′ ) � . D β ( δ ) = sup y , y ′ ; � y − y ′ � = δ The analysis is quite challenging, because D β ( δ ) can be expressed only implicitly. P. Tiˇ no, I. Farkaˇ s and J. van Mourik 11

  13. Receptive fields in RecSOM Theorem - Proof cont’d It is possible to prove that, for a given β > 0 : 1. lim δ → 0 + D β ( δ ) = 0 , 2. D β is a continuous monotonically increasing concave function of δ . � 3. lim δ → 0 + dD β ( δ ) 2 β = e . dδ 1 0.9 0.8 beta=0.5 0.7 0.6 D(delta) beta=2 0.5 0.4 0.3 0.2 0.1 0 0 0.5 1 1.5 2 2.5 3 3.5 4 delta P. Tiˇ no, I. Farkaˇ s and J. van Mourik 12

  14. Receptive fields in RecSOM Theorem - Proof cont’d Therefore, � 2 β D β ( δ ) ≤ δ (13) e . Using (6) we get that if N δ 2 2 β G 2 α ( s , w i ) ≤ ρ 2 δ 2 , � (14) e i =1 then Fs will be a contraction with contraction coefficient ρ . In- equality (14) is equivalent to 2 β � G α ( s ) � 2 ≤ ρ 2 . (15) e P. Tiˇ no, I. Farkaˇ s and J. van Mourik 13

  15. Receptive fields in RecSOM Experiment Natural language data - ”Brave New World” by Aldous Huxley. Removed punctuation symbols, upper-case letters were switched to lower-case, the space between words was represented by ’-’. Length: 356606 symbols. Letters of the Roman alphabet were binary-encoded using 5 bits. RecSOM with 20 × 20 = 400 neurons was trained for two epochs using the following parameter settings: α = 3 , β = 0 . 7 , γ = 0 . 1 and σ : 10 → 0 . 5 . Radius of the neighborhood function reached its final value at the end of the first epoch and then remained constant to allow for fine-tuning of the weights. P. Tiˇ no, I. Farkaˇ s and J. van Mourik 14

  16. Receptive fields in RecSOM Receptive Fields (RF) RF of a neuron is defined as the common suffix of all sequences for which that neuron becomes the best-matching unit. n− n− h− ad− d− he− he− a− ag . in ig . −th −th −th th ti an− u− − l− nd− e− re− −a− ao an ain in . l t−h th . . y− i− g− ng− ed− f− −to− o− en un −in al −al h wh ty ot− at− p− −a− n− on− m− o− −an n rn ul ll e−l e−h gh x y to t− es− as− er− er− mo o −to −on ion . ol e−m m . ey t− ut− s− is− or− ero t−o o lo ho on on oo . om um im am ai ry ts tw ts− r− r− ro wo io e−o −o e−n on −m t−m si ai ri e−s he−w −w t−w no so tio −o ng−o −o −n −l −h e−i di ei ni ui he−s e−w w nw ong no ak k −k −− −o . −l −h −i t−i −wi −hi −li −thi ns rs ing ng nf e−k j e−c −s −g −m −y −i −i i li hi s us uc e−g g if e−f e−b −c −s −w −w −e . −a −a n−a ia la ha is c nc f of −f −f −b −u −u −d d−a t−a na da . −ha as ac ic ib b . oc −v . −p g−t −t −d −e −q e−a a wa era ra ac ir e−r . os −r −p −t s−t . ow sa ore re ar ar hr r tr or op ov −v t−t d−t −t ot od . u se we ere pe es er her z p e−p p av d−t n−t e−t ot ou au −se be ue me es . her ter ap . mp v st rt −st tt ut out lu tu e e−e ce −he ew ev . q ea . . at t o−t ent ont ind d dd de te e he the− e− e− em ec . at −at ht −it nt −and rd e−d ne −the the he− e− eo . . ee ed ed ad it it id ond nd and ud ld le −the he P. Tiˇ no, I. Farkaˇ s and J. van Mourik 15

Recommend


More recommend