time dependence of agn pair echo and halo
play

Time dependence of AGN pair echo, and halo emission as a probe of - PowerPoint PPT Presentation

Time dependence of AGN pair echo, and halo emission as a probe of extragalactic magnetic fields FO, Murase & Kotera, 2017, in prep FO, Murase & Kotera, PoS(ICRC2017)869 FO, Murase & Kotera, A&A 568, A110 (2014) ICRC2017 Foteini


  1. Time dependence of AGN pair echo, and halo emission as a probe of extragalactic magnetic fields FO, Murase & Kotera, 2017, in prep FO, Murase & Kotera, PoS(ICRC2017)869 FO, Murase & Kotera, A&A 568, A110 (2014) ICRC2017 Foteini Oikonomou - Penn State Busan-19 July 2017 1

  2. Introduction/Motivation B in structured region TeV emitting blazar B in voids 2

  3. Introduction/Motivation B in structured region TeV emitting blazar B in voids Emission scenarios: leptonic hadronic 2

  4. Introduction/Motivation B in structured region TeV emitting blazar B in voids Inverse Compton Emission scenarios: leptonic Synchrotron hadronic 2

  5. Introduction/Motivation B in structured region TeV emitting blazar B in voids Inverse Compton Emission scenarios: leptonic Synchrotron hadronic 2

  6. Introduction/Motivation B in structured region TeV emitting blazar B in voids Inverse Compton Emission scenarios: leptonic Synchrotron hadronic 2

  7. Blazar gamma-ray emission E ≲ 260 GeV γ EBL e + e - x x x x γ >GeV Costamante, 2012 3

  8. Inverse-Compton echo E ≲ 260 GeV γ EBL e + e - x x x x γ >GeV FO, Murase & Kotera PoS(ICRC2017)869 10 3 Fermi H.E.S.S. 10 2 E 2 dN/dE [eV cm -2 s -1 ] 10 1 10 0 10 -1 1ES 1101-232, z = 0.18 10 -2 10 8 10 9 10 10 10 11 10 12 10 13 10 14 energy/eV 4

  9. Inverse-Compton echo E ≲ 260 GeV γ EBL e + e - x x x x γ >GeV FO, Murase & Kotera PoS(ICRC2017)869 10 3 10 3 Fermi Fermi H.E.S.S. H.E.S.S. 10 2 10 2 E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] 10 1 10 1 10 0 10 0 10 -1 10 -1 1ES 1101-232, z = 0.18 10 -2 10 -2 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 8 10 9 10 10 10 11 10 12 10 13 10 14 energy/eV energy/eV 4

  10. Inverse-Compton echo E ≲ 260 GeV γ EBL e + e - x x x x γ >GeV FO, Murase & Kotera PoS(ICRC2017)869 10 3 10 3 10 3 B = 10 -16 G, θ V =0 ° Fermi Fermi ∆ T =1000000 yrs H.E.S.S. H.E.S.S. 10 2 10 2 10 2 E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] 10 1 10 1 10 1 10 0 10 0 10 0 10 -1 10 -1 10 -1 1ES 1101-232, z = 0.18 10 -2 10 -2 10 -2 10 8 10 8 10 9 10 9 10 10 10 10 10 11 10 11 10 12 10 12 10 13 10 13 10 14 10 14 10 8 10 9 10 10 10 11 10 12 10 13 10 14 energy/eV energy/eV energy/eV 4

  11. Inverse-Compton echo E ≲ 260 GeV E ≲ 260 GeV γ EBL γ EBL e + e - e + e - x x x x x x γ >GeV γ >GeV FO, Murase & Kotera PoS(ICRC2017)869 10 3 10 3 10 3 10 3 B = 10 -16 G, θ V =0 ° B = 10 -16 G, θ V =0 ° Fermi Fermi ∆ T =1000000 yrs ∆ T =1000000 yrs H.E.S.S. H.E.S.S. B = 10 -15 G, θ V =0 ° 10 2 10 2 10 2 10 2 E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] 10 1 10 1 10 1 10 1 10 0 10 0 10 0 10 0 10 -1 10 -1 10 -1 10 -1 1ES 1101-232, z = 0.18 10 -2 10 -2 10 -2 10 -2 10 8 10 8 10 8 10 9 10 9 10 9 10 10 10 10 10 10 10 11 10 11 10 11 10 12 10 12 10 12 10 13 10 13 10 13 10 14 10 14 10 14 10 8 10 9 10 10 10 11 10 12 10 13 10 14 energy/eV energy/eV energy/eV energy/eV 4

  12. Inverse-Compton echo E ≲ 260 GeV E ≲ 260 GeV γ EBL γ EBL e + e - e + e - x x x x x x γ >GeV γ >GeV FO, Murase & Kotera PoS(ICRC2017)869 10 3 10 3 10 3 10 3 10 3 B = 10 -16 G, θ V =0 ° B = 10 -16 G, θ V =0 ° B = 10 -16 G, θ V =0 ° Fermi Fermi ∆ T =1000000 yrs ∆ T =1000000 yrs ∆ T =1000000 yrs H.E.S.S. H.E.S.S. B = 10 -15 G, θ V =0 ° B = 10 -15 G, θ V =0 ° 10 2 10 2 10 2 10 2 10 2 E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] B = 10 -14 G, θ V =0 ° 10 1 10 1 10 1 10 1 10 1 10 0 10 0 10 0 10 0 10 0 10 -1 10 -1 10 -1 10 -1 10 -1 1ES 1101-232, z = 0.18 10 -2 10 -2 10 -2 10 -2 10 -2 10 8 10 8 10 8 10 9 10 9 10 9 10 10 10 10 10 10 10 11 10 11 10 11 10 12 10 12 10 12 10 13 10 13 10 13 10 14 10 14 10 14 10 8 10 8 10 9 10 9 10 10 10 10 10 11 10 11 10 12 10 12 10 13 10 13 10 14 10 14 energy/eV energy/eV energy/eV energy/eV energy/eV 4

  13. Inverse-Compton Echo-Transient FO, Murase & Kotera, 2017 [PoS(ICRC2017)869] E ≲ 260 GeV E ≲ 260 GeV γ EBL γ EBL e + e - e + e - x x x x x x γ >GeV γ >GeV 10 3 10 3 steady transient B = 10 -16 G, θ V =0 ° B = 10 -18 G, θ V =0 ° ∆ T =1000000 yrs ∆ T =10 yrs B = 10 -15 G, θ V =0 ° B = 10 -17 G, θ V =0 ° 10 2 10 2 E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] B = 10 -14 G, θ V =0 ° B = 10 -16 G, θ V =0 ° 10 1 10 1 10 0 10 0 10 -1 10 -1 10 -2 10 -2 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 8 10 9 10 10 10 11 10 12 10 13 10 14 energy/eV energy/eV 5

  14. Inverse-Compton pair halo emission Neronov & Semikoz 2009 Fermi PSF 10 4 E =10.0-100.0 GeV ∆ T =1000000.0 yrs 1ES 1101-232, z = 0.18 dN/d θ 2 [deg -2 ] 10 2 10 0 B = 10 -15.0 G B = 10 -16.0 G PRELIMINARY B = 10 -17.0 G 10 -2 0 0.1 0.2 0.3 0.4 0.5 θ 2 [deg 2 ] 6

  15. Inverse-Compton pair halo emission Neronov & Semikoz 2009 Fermi PSF 10 4 10 4 B = 10 -17.0 G E =10.0-100.0 GeV E =10.0-100.0 GeV ∆ T =1000000.0 yrs 1ES 1101-232, z = 0.18 dN/d θ 2 [deg -2 ] dN/d θ 2 [deg -2 ] 10 2 10 2 t =100.0 yrs t =10000.0 yrs t =1000000.0 yrs 10 0 10 0 B = 10 -15.0 G B = 10 -16.0 G PRELIMINARY B = 10 -17.0 G 10 -2 10 -2 0 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 θ 2 [deg 2 ] θ 2 [deg 2 ] 6

  16. Formalism FO, Murase, Kotera, PoS(ICRC 2017) 869 Blumenthal & Gould 1970 d N d N d ε d n d ε ⟨ d σ KN � � d E d t = d γ e dE c (1 − µ ) ⟩ d γ e Fast implementation for Fermi Analysis Redshift energy losses Parameter surveys Benchmark with Monte Carlo (ELMAG) Exact geometry Off-axis formalism Full Klein-Nishina cross-section *see also Neronov & Vovk 2010, Taylor et al 2011, Dermer et al. 2011, Murase et al. 2012, Ichiki et al. 2010, 7 Dolag et al. 2011, Huan et al. 2011

  17. B in structured region TeV emitting blazar B in voids Inverse Compton Emission scenarios: leptonic Synchrotron hadronic 8

  18. UHECR induced synchrotron pair echo/halo *sensitive to EGMFs in structured regions Gabici, Aharonian 2005,7 λ syn < λ IC Kotera, Allard, Lemoine 2011 FO, Murase, Kotera 2014 prompt synchrotron γ -rays e + e - UHECRs x x filament/galaxy cluster B > nG typically ~few Mpc Tavecchio 2014 deabsorbed 9 9

  19. UHECR induced synchrotron pair echo/halo *sensitive to EGMFs in structured regions Gabici, Aharonian 2005,7 λ syn < λ IC Kotera, Allard, Lemoine 2011 FO, Murase, Kotera 2014 prompt synchrotron γ -rays e + e - UHECRs x x filament/galaxy cluster B > nG typically ~few Mpc ◆ 2 ✓ ◆ ✓ B E e Guaranteed when λ syn < λ IC E γ , syn ∼ 68 GeV 10 19 eV 10 nG FO, Murase & Kotera, A&A 568, A110 (2014) 0.1 nG 2 10 B = 6nG Example 1ES 0229+200 Mean free path (Mpc) E 2 dN/dE [eV s − 1 cm − 2 ] B = 16nG 1 nG (L CR,ISO = 10 46.5 erg s -1 ) B = 100nG λ Inv. Compton 1 10 B = 316nG HESS 10 nG VERITAS λ synchrotron Fermi/LAT 0 10 9 − 1 10 − 2 10 E (eV) 8 9 10 11 12 13 14 10 10 10 10 10 10 10 9 E [eV]

  20. UHECR induced synchrotron pair echo/halo *sensitive to EGMFs in structured regions Gabici, Aharonian 2005,7 λ syn < λ IC Kotera, Allard, Lemoine 2011 FO, Murase, Kotera 2014 prompt synchrotron γ -rays e + e - UHECRs x x filament/galaxy cluster B > nG typically ~few Mpc ◆ 2 ✓ ◆ ✓ B E e Guaranteed when λ syn < λ IC E γ , syn ∼ 68 GeV 10 19 eV 10 nG FO, Murase & Kotera, A&A 568, A110 (2014) 0.1 nG 2 10 B = 6nG Example 1ES 0229+200 Mean free path (Mpc) E 2 dN/dE [eV s − 1 cm − 2 ] B = 16nG 1 nG (L CR,ISO = 10 46.5 erg s -1 ) B = 100nG λ Inv. Compton 1 10 B = 316nG HESS 10 nG VERITAS λ synchrotron Fermi/LAT 0 10 9 − 1 10 − 2 10 E (eV) 8 9 10 11 12 13 14 10 10 10 10 10 10 10 9 E [eV]

  21. Summary/Outlook New analytical formalism to constrain EGMF strength with blazar pair-echoes/halos Developed for time-dependent pair-echo and pair-halo emission (transient sources) Treatment of off-axis emission (important for radio galaxies) Important for Fermi-LAT parameter surveys Synchrotron emission by UHECRs can explain hard-spectrum ultra-high energy peaked blazars (UHBLs) and probes MF strength in structured regions 10

  22. UHECR induced synchrotron pair echo/halo *sensitive to EGMFs in structured regions GeV cm − 2 s − 1 Kotera et al. 2011 assuming CTA at 10 GeV: ~ 10 -10 GeV cm -2 s -1 ( θ source /1°) Fermi 10 yrs D = 100 Mpc 
 at level of total CR flux * + flux integrated up to D = 1 Gpc 
 B = 1 nG angular extension θ D = 1 Gpc 
 E γ = 1 − 100 GeV 10% of total CR flux L CR,19 = 10 46 erg s − 1 Kotera et al. 2011 11

  23. FO, Murase & Kotera, 2017 [PoS(ICRC2017)869] Back-up: UHECRs vs. UHE neutrals *sensitive to EGMFs in structured regions UHECR x x Murase 2009,12 Dermer et al. x x UHE photons (protons confined) 12 12

  24. FO, Murase & Kotera, 2017 [PoS(ICRC2017)869] Back-up: UHECRs vs. UHE neutrals *sensitive to EGMFs in structured regions UHECR x x Murase 2009,12 Dermer et al. x x UHE photons (protons confined) UHECR, B =100 nG 3 10 UHECR, B = 316 nG 1ES 0229+200 spectra not E 2 dN/dE [eV s − 1 cm − 2 ] UHE � , B=100 nG 2 10 UHE � , B = 316 nG distinguishable! HESS 1 10 VERITAS Fermi/LAT 0 10 − 1 10 UHE photons B 3 Mpc = 316 nG − 2 10 α = 2, E γ , ΜΑΧ = 10 19.5 eV L CR,j ~ 10 45 erg s -1 − 3 10 8 9 10 11 12 13 14 12 12 10 10 10 10 10 10 10 E [eV]

Recommend


More recommend