thin film compression and can laser experimental results
play

Thin Film Compression and CAN Laser Experimental Results Jonathan - PowerPoint PPT Presentation

Thin Film Compression and CAN Laser Experimental Results Jonathan WHEELER cole polytechnique Palaiseau, France C oherent June 25 th , 2019 A mplifying N etwork Workshop on Beam Acceleration in Crystals and Nanostructures, Fermilab, June


  1. Thin Film Compression and CAN Laser Experimental Results Jonathan WHEELER École polytechnique Palaiseau, France C oherent June 25 th , 2019 A mplifying N etwork Workshop on Beam Acceleration in Crystals and Nanostructures, Fermilab, June 24-26, 2019

  2. Coherent Beam Combining of femtosecond fiber amplifiers: a path towards high peak and average power lasers J.-C. Chanteloup, A. Heilmann, L. Daniault, I. Fsaifes, S. Bellanger, A. Brignon, J. Bourderionnet, É. Durand, É. Lallier, C. Larat June 25 th , 2019 Workshop on Beam Acceleration in Crystals and Nanostructures, Fermilab, June 24-26, 2019

  3. General context What about a laser source combining both High peak Short pulses < ps (few fs) & average High repetition rate >10 kHz powers ? 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 3

  4. Peak Power: Chirped Pulse Amplification (CPA) Permits amplification of short pulses to high energy The Nobel Prize in Physics 2018 " for groundbreaking inventions in the field of laser physics “ Arthur Ashkin (Optical Tweezers) / Donna Strickland & Gerard Mourou (CPA) 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 4

  5. Peak Power: The CPA Plateau ? Intensity ~ Energy ____ (Time· Focal Spot) Focal Volume limit: Lambda – cubed Regime λ 3 = λ · λ 2 (Time · Focus) Two Options for continuing the ascent ! 1. Increase energy within volume: kJ ⇒ MJ 2. Decrease the wavelength and accessible volume: NIR NI ⇒ XUV UV ExaWatt Energy: 1 kJ 1 J 10 -15 s 10 -18 s Time: 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 5

  6. Wavelength Scaling of Peak Intensity Intensity ~ c · Pulse Energy_ λ 3 N · M 2 N ≡ Number of cycles M ≡ Number of wavelengths λ 3 limit (M, N) → 1 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 6

  7. Post-Compression Requirement Temporal compression ( i.e. 25 fs to 2.5 fs) Time (fs) From: Δλ ~ 50 nm For λ ~ 800 nm Must produce Δλ ~ 200 nm Wavelength (nm) 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 7

  8. Thin Film Compressor (NIR) Spectral broadening is produced by Self-Phase Modulation (SPM) 𝒐 ~ 𝒐 𝒑 + 𝒐 𝟑 ∙ 𝑱(𝒚, 𝒖) Self – Pha hase se Modul ulation on (t) 𝑱 (t) ω 𝒖 Gau aussia ian Beam am Prof ofile ile Gas-Filled Capillary To 𝒖𝒋𝒏𝒇 (t) Thin Film 𝜚 𝑂𝑀 𝑨 = 𝜕 0 𝑑 𝑜 2 ∙ 𝐽(𝒚, 𝑢) ∙ 𝑨 Fla lat-top 𝜖ω = 𝜖 𝜚 𝑂𝑀 ~ 𝑜 2 · 𝑨 · 𝜖 𝐽(𝒚, 𝑢) 𝜖𝑢 𝜖𝑢 ---- 𝑜 2 = NL Index of Ref. • G. Mourou, G. Cheriaux, C. Radier, Patent 2009 𝑨 = material thickness • A.A. Voronin, A.M. Zheltikov, T. Ditmire, B. Rus , G. Korn, Optics. Com ., 291 , 299 (2013). • Mourou G. et al. Eur. Phys. J. Spec. Top. 223 1181 – 8 (2014) • S. Y. Mironov, J. Wheeler, R. Gonin, G. Cojocaru, R. Ungureanu, R. Banici, M. Serbanescu, R. Dabu, G. Mourou, E. A. Khazanov , Quantum Electron ., 47 , 173 (2017). 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 8

  9. Applications X-ray Production: • Exawatt, Attosec. γ -Pulses ➢ TeV/cm WakeField Acceleration ➢ Short Lifetime Particles (Muon) ➢ QED Vacuum Physics ➢ Table Top Cosmos Laser-driven Acceleration: • Energy Enhancement • Improved Stability/Efficiency ➢ Neutron & Neutrino Sources ➢ Radio-isotope Production Single-Cycle NIR ➢ Nuclear Waste Treatment Direct Use: • Peak Power Enhancement • Beam Propagation • High Energy Plasma Probe 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 9

  10. Single-cycle NIR → Coherent X-rays Relativistic Oscillating Mirror (ROM) E_in τ p E_ph τ pulse ~ 600/a 0 [as] a 0 [J] [as] [eV] [w 0 ~4 μ m] 0.07 10 60 65 10 120 5 830 100 380 1.56 2600 a 0 = e E 0 (m e ω o c) -2 a 0 ~ 1 corresponds to 10 18 W/cm 2 250 600 1 4100 a 0 E_in N. M. Naumova, et al., Phys. Rev. Lett. 92, 063902-1 (2004). 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 10

  11. General context What about a laser source combining both High peak Short pulses < ps (few fs) & average High repetition rate >10 kHz powers ? 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 11

  12. Solid State laser gain medium geometry D Disks Rods h Aspects ratio (h/D) 0.01 0.1 1 10 100 1 000 10 000 Fibers Slabs 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 12

  13. Thermal management of solid state laser gain media Fibers Disk Slabs An ef effic ficie ient th thermal l management Cooling (i.e i.e. . gain in mediu ium heat rem emoval) l) fluid circulation is is favored by y a hig igh coole led su surface /v /volu lume ratio io Rods Abilit ility to work at t hig igh rep epetit itio ion rate 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 13

  14. But one fiber does not provide enough energy Ampli lify fy las laser puls lses through th a network of f fib fiber ampli lifie iers operated in in parall llel 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 14

  15. Laser pulse train coherent addition N fibers amplifier coherent addition principle Amplification Amplifier Dj Spatial separation Coherent Addition Amplification Amplifier Dj Amplifier N Channels Dj Amplifier Amplification Phase measurement ion Network ➔ CAN Coherent Ampli lific icatio 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 15

  16. Chirp Pulse Amplification N fibers amplifier coherent addition principle Amplification Amplifier Dj Spatial separation Coherent Addition Amplification Amplifier Dj Amplifier Compressor Oscillator Stretcher N Channels Dj Amplifier Amplification Phase measurement 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 16

  17. Several prototypes have been developed Active 7 channels prototype Pass assiv ive 19 channels ls pr prot ototype 61 cha hannels ls fi fina nal l pr prot ototype 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 17

  18. Objective Desig ignin ing, in integratin ing and operatin ing a 61 ch channels ls prototype ~ 300 fs ~ 3 mJ ~ 200 kHz 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 18

  19. Address key issues at the 61 channels scale… …and widening the application field XCAN is an IZEST project G.Mourou & T.Tajima 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19

  20. Synoptic view Oscillator Picker stretcher Pulse Shaper 100 mW @ 55 MHz 55 MHz → 8 MHz 200 fs → 5 ns (2 nJ), 200 fs x8 Pre-amp Picker Divider 8 MHz → 900 kHz → 100 mW 8x x8 Pre-amp Picker Divider → 100 mW 900 kHz → 200 kHz x61 61x (+ 3 empty channels) Phase & delay Pre-amp Power amp 5 mJ → 100 mW 125 µJ 7 GW 1 MW (peak) (peak) Compresseur 5 ns → 350 fs 5 mJ 3 mJ 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 20

  21. Phase control with two devices Amplification Coherent addition Dj Amplification Divider Dj Source Stretcher Amplification Compressor N channels Dj Amplification Fiber Stretcher (FS) Variable optical delay line j 1 2 l /V, linear j 2 Response time : 70 µs for 22 l j 3 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 21

  22. Phase measurement through interferometry Amplification Coherent addition Dj Amplification Divider Dj Source Stretcher Amplification Compressor N channels Dj Amplification 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 22

  23. Interferometric temporal synchronization Reference pulse Contrast monitoring Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 23

  24. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 24

  25. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 25

  26. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 26

  27. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 27

  28. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 28

  29. Interferometric temporal synchronization Reference pulse Delay lines 1 2 3 Camera 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 29

  30. Interferometric temporal synchronization Reference pulse <1kHz external perturbations ➔ Moving fringes Delay lines 1 2 3 Camera ➔ Phase locking with kHz feed back loop 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 30

  31. Interferometric temporal synchronization Reference pulse Delay lines Fiber stretchers j 1 1 j 2 2 j 3 3 Camera kHz Phase control 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST) 19 31

  32. 3 fibers co-phasing film P3 vitesse 2.5.avi 20 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST)

  33. Far field combination for max scalability Amplification Coherent addition Dj Amplification Divider Dj Source Stretcher Amplification Compressor N channels Dj Amplification Near field Far field µlens array power in main lobe of far field pattern Far field efficiency h FF = overall power in far field 21 6/24/2019 J-C CHANTELOUP (XCAN) / J WHEELER (IZEST)

Recommend


More recommend