thermodynamic studies of strongly correlated 2d electron
play

Thermodynamic studies of strongly correlated 2D electron system - PowerPoint PPT Presentation

Thermodynamic studies of strongly correlated 2D electron system Vladimir Pudalov, Ginzburg Center, LPI Alexander Kuntsevich, LPI Igor Burmistrov, Landau ITP Landau ITP Michael Reznikov, Technion, Haifa 1 Thermodynamic studies of strongly


  1. Thermodynamic studies of strongly correlated 2D electron system Vladimir Pudalov, Ginzburg Center, LPI Alexander Kuntsevich, LPI Igor Burmistrov, Landau ITP Landau ITP Michael Reznikov, Technion, Haifa 1

  2. Thermodynamic studies of strongly correlated 2D electron system V.M. Pudalov, A.Yu. Kuntsevich, M.E. Gershenson, I.S. Burmistrov, M. Reznikov, Phys. Rev. B 98 , 155109 (2018). L.A.Morgun, A.Yu. Kuntsevich, and V.M.P, Phys. Rev. B 93, 235145 (2016). N.Teneh, A.Yu. Kuntsevich, V.M.P, M.Reznikov, Phys. Rev. Lett . 109 , 226403 (2012). A.Yu.Kuntsevich, Y.V.Tupikov, V.M.P., I.S.Burmistrov, Nature Comm . 6, 7298 (2015). Y.Tupikov, A.Yu.Kuntsevich, V.M.Pudalov, I.S.Burmistrov, JETP Lett. 101 , 125 (2015) 2

  3. Motivation • Exper data shows strong growth of χ s with r s σ → -1). Stoner instability in the 2D FL-state ? (i.e. F 0 • 2D systems are probed mainly by transport. Can the thermodynamics be measured when the number of particles ~ 10 8 ? • Transport studies reveal inconsistency with homogeneous FL concepts. Can the thermodynamics shed a light ? E 1 = ∝ ee r s E λ F n F 3

  4. Strong growth of χ * ∝ m*g* with density lowering ( r s growing) n = 3 × 10 12 см -2 n = 8 × 10 10 см -2 2 4 6 8 r s V.M.Pudalov, et al., PRL 88 , 196404 (2002); PRB 2008 4

  5. a | with lowering n Strong growth of | F 0 (increase of r s ) g = b g * σ + 1 F 0 Towards Stoner (or Bloch) instability N. Klimov, D. Knyazev, O. Omelyanovskii, V. Pudalov, H.Kojima, M. Gershenson, PRB 78, 195308 (2008) 5

  6. Ground state energy of the 2D system  Variational and fixed- node MC calculations have insufficient accuracy  No way to measure E g crystal  Constructive approach: to measure ∂ E/ ∂ x r s = U / E F ∝ n -1/2 Tanatar, Ceperley, PRB 1989 6

  7.  First Derivatives ∂ E/ ∂ x : ∂ E / ∂ n = µ chemical potential ∂µ / ∂ n compressibility ∂µ / ∂ B magnetization ∂µ / ∂ T entropy 7

  8. 1. С ompressibility ∂µ / ∂ n For the ideal Fermi gas 2D F-gas 2D FL 8

  9. 1. С ompressibility ∂µ / ∂ n For the ideal Fermi gas 2D F-gas 2D FL VP et al, JETPLett. (1985) 9

  10. 2. Spin magnetization ∂µ / ∂ B. Current Amplifier Principle of measurements + Gate V G _ Out SiO 2 Modulated magnetic field B+ δΒ Si Ohmic contact 2D electron gas δ B ~ = 0.03T, 6Hz Advantages M.Reznikov, A.Yu.Kuntsevich, •High sensitivity (10 8 spins) N.Teneh, V.M.P, JETP Lett. (2010). •Measures thermodynamic N.Teneh, A.Yu. Kuntsevich, V.M.P, magnetization M.Reznikov, Phys. Rev. Lett. 109, •Accessibility of the Insulating 226403 (2012). phase •Low-field measurements 10

  11. Electric circuitry Maxwell relation V Modulated magnetic field Current Amplifier B+ δΒ V=Q/C 0 + ∆µ /e V Out SiO 2 Si Ohmic contact ∂ µ 2 e dn = − 2D electron gas ~ ∂ C dB B N.Teneh, AK, VP, M.R., PR L 109 , 226403 (2012) 11

  12. Principle of measurements e φ W 2D = ∆ ϕ + ∆ µ U / e µ ∂ µ ∆ ω W Al eV G B cos( t ) ∆ ϕ = −∆ µ = − ∂   / e ε 0 B e Al ∂ µ ∆ ω ω SiO 2 B C sin( t )  = ∂ Si I B e z ∂ µ ∂ M = − Maxwell relation: ∂ ∂ B n n B F(n,B) – free energy 12

  13. dM / dn , expectations for the degenerate Fermi-gas (no interactions) dM dn µ µ B 2 E F / g µ B g µ Β Β B Polarization field 13

  14. Earlier measurements (high fields) . ∂ µ n = 1.5 · 10 11 cm -2 1 µ B ∂ B g µ B B ~2 E F B (Tesla) O.Prus, Y.Yaish, M.Reznikov, U.Sivan, V.Pudalov, PRB , 67, 205407 (2003) 14

  15. Low field measurements : B < T n = 1.5 × 10 11 cm -2 ∂ µ 1 µ B ∂ B kT g µ B B~2E F B (Tesla) N.Teneh, A.Yu. Kuntsevich, V. M. Pudalov, and M. Reznikov, 15 Phys.Rev.Lett. 109, 226403 (2012).

  16. dM / dn > μ B FM - b * interaction ! Mean field simulation t = T / T c , T c ∝ n k J ~ 1/2 b* ~ 2 dM/dn changes sign with T ! 16

  17. dM / dn > μ B n=0.5x10 11 FM - interaction ! Mean field simulation t = T / T c , T c ∝ n k dM/dn changes sign with n ! 17

  18. Two phase state FL 18

  19. Sign reversal of dM / dn 2 × 10 11 cm -2 T=1.7K 0.5 × 10 11 cm -2 - dM / dn ( µ B ) 6.8K ∂ M / ∂ n <0 at n > n c ⇒  each electron added to the 2D system causes decrease in the number of SDs ∂ M / ∂ n > 0 for n → 0  ∂ M / ∂ n → 0 at n = n c ⇒ A critical behavior of ∂ M / ∂ n ∂ M / ∂ n < 0 for n > n c 19

  20. Thermodynamic spin susceptibility This is the response of the overall electrons T 1.7 8K Susceptibility of the localized spins greatly exceeds and masks that of the itinerant electrons 20

  21. Density dependence of d χ / dn 1.7K 1.8K 3.5 2K 2.2K 3 2.4K 2.7K 2.5 2.9K ∂χ / ∂ n [ µ B /T] 3.1K 2 3.3K 3.5K 1.5 3.8K n c 4K 1 4.2K 4.6K 0.5 5.1K 5.7K 0 6.9K 8K -0.5 9.2K 13.1K 0 2 4 6 8 10 n [10 11 cm -2 ] 21

  22. Sign change of d χ / dn (and dM / dn ): a critical behavior 22

  23. Sign change of dM / dn : critical behavior n c 23

  24. Thermodynamic spin susceptibility: T-dependence This is the response of the overall electrons Susceptibility of the localized spins diverges as ~(1/T) 2 24

  25. Part 2: Entropy 25

  26. Entropy per electron Problem: n =0 is inaccessible 26

  27. Differential entropy per electron Problem: n =0 is inaccessible 27

  28. Experimental set-up & principle of measurements ∂ µ ∆ = ω i ( t ) TC sin( t ) ∂ 0 T sample ∆ d ( T ) = − c dt ∆ J = j 0 cos( ω t/2) heat sink α d ( T ) 1 − α ∆ = π 2 C T i r cos( 2 ft ) 0 dt 2 Liquid He bath For f > α / C ~0.1 Hz, ∆ T 0 ~1/ Cf and i ≠ i ( f ) 28

  29. Samples and their parameters T = 2.5-25K B =0-9Tesla ∆ T ~0.05-0.25K f ~ 0.15 - 5 Hz 29

  30. Expectations: Entropy for the 2D case S=- Σ { f . ln(f)+(1-f) . ln(1-f)} For a degenerate 2D Fermi-gas with D = Const dS / dn = - d µ / dT = 0. When dS/dn ≠ 0 ? D depends on the Non-degenerate system carrier density Interacting system 30

  31. 31 Entropy magneto-oscillations Ideal degenerate 2D gas VALLEY VALLEY CYCLOTRON SPIN GAP GAP GAP GAP

  32. Ideal 2D gas in GaAs/AlGaAs dS / dn vs B Y. Tupikov et al, JETPL 2015 32

  33. What is expected in zero field ? n=10 11 cm -2 U~e 2 /<r>~n 1/2 70K E F ~n 7K r s ~U/E F ~n -1/2 10 T ~ T F . Non-degenerate Fermi-gas > 0 T << T F . Degenerate Fermi liquid < 0 Small corrections ? n, E F / T 33

  34. Positive & negative ( ∂ S/ ∂ n) E F ≈ 10K In accord with FL: (i) The higher the temperature, the larger is the entropy (ii) As n increases, (d S/dn) decreases to 0 (iii) For the lowest T ’s and high densities, (dS/dn) gets negative (iv) The effective mass agrees with that extracted from SdH 34

  35. Negative ( ∂ S/ ∂ n) In accord with FL : (i) The higher the temperature, the larger is the entropy (ii) As n increases, S decreases to 0 (iii) For the lowest T ’s and high densities, S gets negative (iv) The effective mass agrees with that extracted from SdH 35

  36. Positive ( ∂ S/ ∂ n) However, (dS/dn) exceeds the value calculated for the ideal Fermi-gas 36

  37. Role of the disorder “Dirty sample” Clean sample Disorder does not affect the entropy behavior!! 37

  38. Checking the 3rd low: Entropy integration The 3rd low of thermodynamics in the Fermi-liquid 38

  39. Thermodynamic effective mass The effective mass m*(n) shows a reentrant behavior. It tends to m b as n → 0. m*(n) from SdH in the FL regime 39

  40. Thermodynamic effective mass The effective mass m*(n) shows a reentrant behavior. It tends to m b as n → 0. Strongly correlated plasma regime: m *( n,T ) can be scaled using effective parameter E F < T << U 40

  41. Thermodynamic effective mass & Plasma regime parametrization 41

  42. Summary:  One can measure ∂ S/ ∂ n for a system with n>10 8 electrons.  High densities, low temperature — Fermi-liquid  Low densities — strongly correlated plasma : Novel state of the electronic matter, where interaction parameter is T- and n- dependent . Thank you for attention ! 42

Recommend


More recommend