thermal conductive polymers thermal conductive polymers
play

Thermal Conductive Polymers Thermal Conductive Polymers gen-Nuernb - PowerPoint PPT Presentation

INSTITUTE OF POLYMER TECHNOLOGY Prof. Dr.-Ing. Dietmar Drummer berg Thermal Conductive Polymers Thermal Conductive Polymers gen-Nuernb and their Benefit for MID ersity Erlan 9 th International Congress Molded Interconnect Devices, Fuerth,


  1. INSTITUTE OF POLYMER TECHNOLOGY Prof. Dr.-Ing. Dietmar Drummer berg Thermal Conductive Polymers Thermal Conductive Polymers gen-Nuernb and their Benefit for MID ersity Erlan 9 th International Congress Molded Interconnect Devices, Fuerth, 29./30.09.2010 ogy – Unive Dipl.-Wirtsch.-Ing. Florian Ranft Dipl -Ing Christoph Heinle Dipl.-Ing. Christoph Heinle mer Technolo Prof. Dr.-Ing. Dietmar Drummer Dipl.-Ing. Johannes Hoerber, Institute FAPS Prof. Dr.-Ing. Joerg Franke, Institute FAPS Prof. Dr. Ing. Joerg Franke, Institute FAPS te of Polym Prof. Dr.-Ing. XYZ Institute of Polymer Technology University Erlangen-Nuernberg A Am Weichselgarten 9 W i h l 9 Institu 91058 Erlangen Germany

  2. Outline berg � Motivation gen-Nuernb � Thermal Conductive Polymers (TCP) ersity Erlan � Investigation and Material Properties � Results ogy – Unive � TCP and Solderability mer Technolo � TCP � TCP and Application Reliability d A li ti R li bilit � TCP and Thermal Management te of Polym � Summary Institu 2

  3. Motivation Manufacturing New Fields of Application berg gen-Nuernb i j injection molding ti ldi automotive / medical � mechanical requirements high reliability and harsh environmental conditions � thermal requirements ersity Erlan � electrical requirements metallization source: lanxess/Harting Mitronics ogy – Unive � physical requirements power electronics / � chemical requirements lighting technologies mer Technolo adapted thermal soldering management � geometrical requirements � environmental sustainability � environmental sustainability te of Polym source: FAPS/TECHNOMID Institu � suitable substrate materials satisfying a wide range of technical requirements are necassary for spreading the MID-technology 3

  4. Motivation Thermal load on substrate material berg gen-Nuernb requried temperature profiles for reflow soldering reflow soldering: Chemical aging Chemical aging ersity Erlan � degradation of molecular chains ogy – Unive � cross-linking � … mer Technolo Physical aging Dimensional stability under heat � post-cristallization � warpage and distortion � relaxation l ti � partial melting at edges etc. te of Polym � … � … Institu � malfunction of MID because of thermal loads during manufacturing and application 4

  5. Thermal Conductive Polymers (TCP) Thermal Conductive Polymers for: berg gen-Nuernb Effects: dimensional accuracy dimensional accuracy ersity Erlan � improving mechanical stability dimensional stability � homogeneous temperature homogeneous temperature ogy – Unive distribution reduction of Hot-Spots � low thermal expansion mer Technolo � heating and cooling of electronic components te of Polym Potentials from the view of manufacturing and economics: � enhanced spectrum of materials � integration of additional f features t Institu � enlargement of the process latitude 5

  6. Thermal Conductive Polymers (TCP) Filler performance berg Combining advantages of gen-Nuernb materials and processes increasing electrical and thermal conductivity ersity Erlan attainment of magnetical function Thermoplastic matrices Fillers changing mechanical properties g g p p Powder Powder ogy – Unive Fibers Flakes Injection Molding ... mer Technolo Additives Stabilizers Functionalized Antioxidants compounds Sli Slip additives dditi te of Polym ... Institu � polymer preparation with different filler systems enables innovative substrate materials for MID with additional functions 6

  7. Thermal Conductive Polymers (TCP) berg Suppliers: gen-Nuernb � Albis Plastic GmbH copper- � Polyone compounds graphite- graphite � Lehmann & Voss & Co � Lehmann & Voss & Co. ersity Erlan compounds � Cool Polymers Inc. k � RTP Company � Lati Industria Thermoplastici Lati Industria Thermoplastici ogy – Unive � … Polymers: y mer Technolo PA6, PA66, PBT, PPS… aluminum- compounds ceramic - compounds compounds te of Polym Institu � functionalized compounds with thermal conductivities up to 20 Wm -1 K -1 based on various basic polymers are available 7

  8. Investigation � thermal conductivity � filler shape berg � heat capacity � filler size gen-Nuernb Material � thermal expansion � filler fraction � … � … ersity Erlan polymer + thermal conductive filler ogy – Unive thermal management mechanical behaviour mer Technolo thermophysical and –mechanical properties ^^^^^^^^^^^^^^^^ te of Polym Construction Process � component size p � orientation filler Institu � ribs and beadings � cooling conditions � … � … 8

  9. Investigation Molded Interconnect Test Specimens berg Devices Devices gen-Nuernb plate heat sink ersity Erlan ogy – Unive 50 x 55 x 2 mm 3 base: 80 x 60 x 2 mm 3 ribs (height): 25 mm mer Technolo Thermal Conductive Polymers te of Polym matrix: filler: polyamide 66 aluminum oxide Al 2 O 3 (Durethan A30S) (Alcoa CL 3000FG) Institu k = 0,2 – 0,4 Wm -1 K -1 k = 20 – 40 Wm -1 K -1 20 μ m 9

  10. Thermal behavior – Conductivity berg gen-Nuernb ersity Erlan ogy – Unive mer Technolo neat PA66 te of Polym Institu � addition of 50 vol.-% aluminum oxide increases the thermal conductivity approx. from 0,3 to 2,0 Wm -1 K -1 at room temperature (T = 23 °C) 10

  11. Mechanical behavior – Stiffness berg gen-Nuernb ersity Erlan ogy – Unive mer Technolo te of Polym Institu � particle modification in high concentrations as a method for increasing the stiffness of MID substrate materials 11

  12. Rheological behavior – Flowability berg plate/plate - rheometer gen-Nuernb ersity Erlan ogy – Unive mer Technolo v v te of Polym Institu � increasing viscosity and suppressed melt flow in consequence of growing filler content 12

  13. Thermomechanical behavior – Thermal expansion 1 st heating berg gen-Nuernb 0 -6 /°C] ersity Erlan nsion α [1 rmal expan ogy – Unive mer Technolo ther te of Polym filler fraction Φ [vol.-%] Institu � considerable decline of thermal expansion below and above glass transition temperature with increasing filler content 13

  14. TCP and Solderability soldering method: forced convection berg solder alloy: SnAgCu (lead free) solder alloy: SnAgCu (lead free) gen-Nuernb PA66 + 50 vol.-% Al 2 O 3 235°C 250°C 235°C 240°C 250°C 290°C 280°C 70°C 40°C ersity Erlan neat PA66 210°C 225°C 210°C 215°C 225°C 290°C 265°C 70°C 40°C consistent T T ogy – Unive surface T activation = 170°C T liquidus T li = 217°C 217 C mer Technolo id T maximum = 240°C te of Polym neat PA66 210°C 225°C 210°C 215°C 225°C 290°C 265°C 70°C 40°C PA66 + 50 vol.-% Al 2 O 3 235°C 250°C 235°C 240°C 250°C 290°C 280°C 70°C 40°C Institu � adapted temperature settings of the reflow oven to comply with the required processing guidelines due to the specific material properties of the substrate 14

  15. Results – Solderability berg gen-Nuernb ersity Erlan ogy – Unive mer Technolo te of Polym Institu � homogeneous component heating and evenly distributed solder joints quality at all levels due to high heat flux 15

  16. Results – Solderability berg 50 gen-Nuernb p1 55 p2 p3 ersity Erlan ogy – Unive mer Technolo te of Polym Institu � higher stiffness combined with a uniform lower shrinkage cause reduced warpage after forced convection soldering 16

  17. TCP and Application Reliability berg stamping die with hot-embossed gen-Nuernb conductor layout plate specimens 2 1 3 3 0 5 0,5 ersity Erlan ogy – Unive 55 50 60 mer Technolo 43 50 te of Polym optimized peel strength (> 1 N/mm) Institu � MID metallization with adhesive free stamping foils (CuSn/Bo) with a thick- ness of 35 µm via hot-embossing (T s = 255 °C / t s = 2,5 s / P s = 120 MPa) 17

  18. TCP and Application Reliability berg temperature shock temperature shock gen-Nuernb t h = 15 min test chamber ersity Erlan ogy – Unive mer Technolo te of Polym Institu � MID application reliability under enhanced thermal conditions verified by thermal shock testing (1.000 cycles each -40°C/+125°C) 18

  19. Results – Application Reliability berg gen-Nuernb highly filled PA66 - no detectable defects no detectable defects ersity Erlan ogy – Unive mer Technolo te of Polym Institu � cracks in hot-embossed copper metallization as failure mechanism at neat PA66 after thermal cycling due to high thermomechnical stress 19

  20. TCP and Thermal Management 3D-MID: an innovative assembly & berg heat sink concept heat sink concept gen-Nuernb i t interconnection ti metallization & structuring structuring ersity Erlan circuit carrier production ogy – Unive placement and placement and mer Technolo reflow soldering hot embossing te of Polym injection molding Institu � thermal management of electronic components via heat dissipation by introducing TCP as innovative MID substrate materials 20

  21. TCP and Thermal Management front side front side K -1 ) berg -1 ) gen-Nuernb 5 Wm -1 K - 32 Wm -1 ( λ ≈ 0,35 er ( λ ≈ 2, ersity Erlan ogy – Unive ctive fille ss fibers back side back side mer Technolo 66 + glas + condu PA6 PA66 te of Polym Institu � 3D specimen featuring surface area for circuitry (front side) and integrated cooling ribs for convective heat transfer (back side) 21

Recommend


More recommend