theoretical studies on reaction mechanisms of unstable
play

Theoretical Studies on Reaction Mechanisms of Unstable Nuclei - PowerPoint PPT Presentation

Theoretical Studies on Reaction Mechanisms of Unstable Nuclei Kazuyuki Ogata Department of Physics, Kyushu University You are here. Outline 0) Brief introduction to CDCC M. Kamimura, Yahiro, Iseri, Sakuragi, Kameyama and Kawai, PTP Suppl. 89 ,


  1. Theoretical Studies on Reaction Mechanisms of Unstable Nuclei Kazuyuki Ogata Department of Physics, Kyushu University You are here.

  2. Outline 0) Brief introduction to CDCC M. Kamimura, Yahiro, Iseri, Sakuragi, Kameyama and Kawai, PTP Suppl. 89 , 1 (1986); N. Austern, Iseri, Kamimura, Kawai, Rawitscher and Yahiro, Phys. Rep. 154 (1987) 126. 1) Four-body breakup processes for 6 He induced reaction T. Matsumoto, Hiyama, O., Iseri, Kamimura, Chiba, Yahiro, PRC 70 , 061601(R) (2004); T. Matsumoto, Egami, O., Iseri, Kamimura, Yahiro, PRC 73 , 051602 (R) (2006); T. Egami, Matsumoto, O., Yahiro, PTP 121 , 789 (2009). 2) Microscopic description of projectile breakup processes K. Minomo, O., Shimizu, Kohno, Yahiro, J Phys. G 37, 085011 (2010). 3 New approach to inclusive breakup processes S. Hashimoto, O., Chiba, Yahiro, PTP 122 , 1291 (2009); T. Ye, Watanabe, O., Chiba, PRC 78 , 024611 (2008); T. Ye, Watanabe, O., PRC 80 , 014604 (2009).

  3. The Continuum-Discretized Coupled Channels method (CDCC)  a  r ( k )  ( k ) ^  i x c  0 ( k 0 )   0 ( k 0 ) R ( K )      i    m ax  k       ˆ i ˆ ( , r R ) ( k , r ) ( K , R ) ( K , R ) ( , k r dk ) 0 0 0 0 i k   i 1 i 1   Truncation and Discretization   i   m ax A    ˆ ˆ C D C C ˆ ( , r R ) ( ) r ( K , R ) i i i  i 0

  4. Outline 0) Brief introduction to CDCC M. Kamimura, Yahiro, Iseri, Sakuragi, Kameyama and Kawai, PTP Suppl. 89 , 1 (1986); N. Austern, Iseri, Kamimura, Kawai, Rawitscher and Yahiro, Phys. Rep. 154 (1987) 126. 1) Four-body breakup processes for 6 He induced reaction T. Matsumoto, Hiyama, O., Iseri, Kamimura, Chiba, Yahiro, PRC 70 , 061601(R) (2004); T. Matsumoto, Egami, O., Iseri, Kamimura, Yahiro, PRC 73 , 051602 (R) (2006); T. Egami, Matsumoto, O., Yahiro, PTP 121 , 789 (2009). 2) Microscopic description of projectile breakup processes K. Minomo, O., Shimizu, Kohno, Yahiro, J Phys. G 37, 085011 (2010). 3 New approach to inclusive breakup processes S. Hashimoto, O., Chiba, Yahiro, PTP 122 , 1291 (2009); T. Ye, Watanabe, O., Chiba, PRC 78 , 024611 (2008); T. Ye, Watanabe, O., PRC 80 , 014604 (2009).

  5. 4-body CDCC  Discretization of 6 He W. Fn. by diagonalizing internal Hamiltonian.  Gaussian Expansion Method (GEM) n n n  6He = + + 4 He 4 He 4 He n n n Hiyama, Kino, Kamimura,  Diagonalization of internal Hamiltonian Prog. Part. Nucl. Phys. 51, 223 (2003). 3-body structure of 6 He 0 + 1  2 + Energy of 6 He 4-body W. Fn. Discretized i  max    i  ˆ 4 - CDCC ˆ continuum i  states! i 0 C.M. motion between 6 He and A 37 44 53 T. Matsumoto, Hiyama, O., Iseri, Kamimura, Chiba, Yahiro,  0.97MeV(g.s.) PRC70, 061601(R) (2004).

  6. Virtual 4-body breakup of 6 He by 209 Bi Key points 3-body CDCC 4-body CDCC  4-body CDCC reproduces well the data. 4-body CDCC  3-body CDCC not. w/o BU Aguilera et al.  Virtual breakup of 6 He is important. T. Matsumoto, Egami, O., Iseri, Kamimura, Yahiro, PRC73, 051602 (R) (2006). 6 He- 209 Bi at 22.5 MeV New topic  4-body CDCC based on binning method M. Rodriguez-Gallardo, Arias, Gomez-Camacho, Moro, Thompson, PRC80, 051601 (R) (2009). Future work  Systematic analysis of 4-body breakup 6 He- 208 Pb at 22 MeV  5-body and 6-body CDCC (with COSM)

  7. Real 4-body breakup of 6 He Key points  Smoothing discrete observables  Simple Lorenzian procedure fails.  A smoothing method with L-S Eq. works. T. Egami, Matsumoto, O., Yahiro, PTP121, 789 (2009). New topic  Complex-scaled smoothing method T. Matsumoto, Kato, Yahiro, arXiv:1006.0668 (2010). Future work  Direct comparison with exp. data

  8. Real 4-body breakup of 6 He Key points  Smoothing discrete observables  Simple Lorenzian procedure fails.  A smoothing method with L-S Eq. works. T. Egami, Matsumoto, O., Yahiro, PTP121, 789 (2009). New topic  Complex-scaled smoothing method T. Matsumoto, Kato, Yahiro, arXiv:1006.0668 (2010). Future work  Direct comparison with exp. data M. Rodriguez-Gallardo, Arias, Gomez-Camacho, Moro, Thompson, PRC80, 051601 (R) (2009).

  9. Outline 0) Brief introduction to CDCC M. Kamimura, Yahiro, Iseri, Sakuragi, Kameyama and Kawai, PTP Suppl. 89 , 1 (1986); N. Austern, Iseri, Kamimura, Kawai, Rawitscher and Yahiro, Phys. Rep. 154 (1987) 126. 1) Four-body breakup processes for 6 He induced reaction T. Matsumoto, Hiyama, O., Iseri, Kamimura, Chiba, Yahiro, PRC 70 , 061601(R) (2004); T. Matsumoto, Egami, O., Iseri, Kamimura, Yahiro, PRC 73 , 051602 (R) (2006); T. Egami, Matsumoto, O., Yahiro, PTP 121 , 789 (2009). 2) Microscopic description of projectile breakup processes K. Minomo, O., Shimizu, Kohno, Yahiro, J Phys. G 37, 085011 (2010). 3 New approach to inclusive breakup processes S. Hashimoto, O., Chiba, Yahiro, PTP 122 , 1291 (2009); T. Ye, Watanabe, O., Chiba, PRC 78 , 024611 (2008); T. Ye, Watanabe, O., PRC 80 , 014604 (2009).

  10. Microscopic CDCC  (Global) N -A and A-A optical potentials are necessary for systematic analysis with CDCC n p c n A

  11. Microscopic optical potentials Key points  Localization of microscopic opt. pot. K. Minomo, O., Shimizu, Kohno, Yahiro, JPG in press; arXiv:0911.1184 c.f. F. A. Brieva and J. R. Rook, NP A291, 317 (1977). p - 90 Zr at 65 MeV  Proper NN eff. int. in nuclear medium T. Furumoto, Sakuragi, Yamamoto, PRC78, 044610 (2008); 79, 011601(R) (2009).  “Predictability” and applicability c.f. K. Amos et al ., adv. Nucl. Phys. 25, 275 (2000).

  12. Nucleon-nucleus scattering □ Folding model The equation for the relative motion Folding potential : ground-state wave function of the target We obtain the localized folding potential with the Brieva-Rook (BR) method. F. A. Brieva and J. R. Rook, Nucl. Phys. A 291 , 317 (1977).

  13. Structure model  Hartree-Fock method with finite-range Gogny force It is applicable to obtain the ground-state wave function of all nuclei. The properties of many stable nuclei such as the binding energy are well reproduced. We find that this method is reliable.

  14. Interaction for reaction dynamics  Melbourne g -matrix Two-body interaction which depends on the target density K. Amos, P. J. Dortmans, H. V. von Geramb, S. Karataglidis and J. Raynal, Adv. Nucl. Phys. 25 , 275 (2000). □ The framework in this study HF method with Gogny force Melbourne g -matrix BR localization Pure theoretical framework without any parameter

  15. p + 90 Zr elastic scattering Stable nucleus 90 Zr

  16. Central (microscopic) + LS (Dirac phenomenology)

  17. 6,8 He+ p elastic scattering Unstable nucleus 6 He Unstable nucleus 8 He

  18. The validity of BR localization It is necessary to test the accuracy of the BR localization. We have to solve the Schrödinger equations Exact: For only elastic scatterings, one can calculate the exact form. BR: We tested the validity of the BR localization by comparison of the exact calculation and BR calculation.

  19. Exact vs BR for p+ 90 Zr 90 Zr

  20. Exact vs BR for 6 He+p and 8 He+p 6 He 8 He

  21. No Perey factor needed!

  22. Application □ For deuteron induced reaction Optical potentials as an input three-body model  Continuum-Discretized Coupled-Channels method (CDCC) It is a standard direct reaction theory to describe real and virtual breakup.

  23. d + 58 Ni elastic scattering Success of Microscopic CDCC

  24. Microscopic CDCC for 6 Li induced reactions ( d +   +A model: d -A and  -A potentials are evaluated with JLM eff. int. and HF densities. 5 5 10 10 4 10 4 40 Ca at 210 MeV 10 3 12 C at 150 MeV 10 d  elas / d  (mb/sr) d  elas / d  (mb/sr) 3 2 10 10 1 2 10 10 0 10 1 -1 10 10 -2 0 10 10 -3 10 -1 10 -4 10 -2 -5 10 10 0 10 20 30 40 50 60 0 10 20 30 40 50 60 1 5 10 10 4 10 0 208 Pb at 210 MeV 28 Si at 240 MeV 10 3 10 d  elas / d  (mb/sr) Rutherford Ratio 2 -1 10 10 1 10 -2 0 10 10 -1 -3 10 10 -2 10 -4 -3 10 10 -4 -5 10 10 -5 10 -6 -6 10 10 0 10 20 30 40 50 60 0 10 20 30 40 50 60  cm (deg)  cm (deg)

  25. Outline 0) Brief introduction to CDCC M. Kamimura, Yahiro, Iseri, Sakuragi, Kameyama and Kawai, PTP Suppl. 89 , 1 (1986); N. Austern, Iseri, Kamimura, Kawai, Rawitscher and Yahiro, Phys. Rep. 154 (1987) 126. 1) Four-body breakup processes for 6 He induced reaction T. Matsumoto, Hiyama, O., Iseri, Kamimura, Chiba, Yahiro, PRC 70 , 061601(R) (2004); T. Matsumoto, Egami, O., Iseri, Kamimura, Yahiro, PRC 73 , 051602 (R) (2006); T. Egami, Matsumoto, O., Yahiro, PTP 121 , 789 (2009). 2) Microscopic description of projectile breakup processes K. Minomo, O., Shimizu, Kohno, Yahiro, J Phys. G 37, 085011 (2010). 3 New approach to inclusive breakup processes S. Hashimoto, O., Chiba, Yahiro, PTP 122 , 1291 (2009); T. Ye, Watanabe, O., Chiba, PRC 78 , 024611 (2008); T. Ye, Watanabe, O., PRC 80 , 014604 (2009).

  26. Inclusive BU (incomplete fusion) process S. Hashimoto, O., Chiba, Yahiro, PTP122, 1291 (2009). 7 Li( d,nx ) p Dividing the integration region with respect to absorbing radii of p and n. n 7 Li Total Fusion: p and n absorbed only p absorbed n p 7 Li ??? c.f. IFMIF project only n absorbed no contribution

Recommend


More recommend