THEORETICAL METHODS TO TREAT CORRELATED ELECTRON AND NUCLEAR DYNAMICS FOR CLOSED AND OPEN QUANTUM SYSTEMS Peter Saalfrank I. Andrianov, F. Bouakline, T. Klamroth, S. Klinkusch, P. Krause, U. Lorenz, F. L¨ uder, M. Nest, J.C. Tremblay University of Potsdam, Germany
REAL-TIME DYNAMICS: FEMTOCHEMISTRY Zewail et al. , 1990’s femtosecond chemistry: 1 fs = 10 − 15 s nuclear (atomic) motions
REAL-TIME DYNAMICS: ATTOPHYSICS Corkum, Krausz, . . . , > 2000 attosecond physics: 1 as = 10 − 18 s electronic motions
THIS TALK IS ABOUT . . . ➊ Electron dynamics (mostly light-driven) • Methods – Wavefunction-based: TD-CI, TD-CASSCF (=MCTDHF) – Open-system density matrix based: ρ -TDCI • Some applications – Response to laser pulses – Correlation and its control ➋ Nuclear dynamics (mostly for system-bath problems) • Methods – Wave-function based: MCTDH – Open-system density matrix based: Lindblad approach • Application – Vibrational dynamics and relaxation
LASER-DRIVEN ELECTRON DYNAMICS
ELECTRON MOTION IN MOLECULES: LASERS • Electronic wavepackets (and control) dissociation of D + 2 • HHG, orbital tomography HOMO of N 2 Kling et al. , Science 312 , 264 (2006) Corkum et al. , Nature 432 , 867 (2004)
LASERS AND ELECTRON DYNAMICS: METHODS • The N-electron time-dependent Schr¨ odinger equation � � h∂ Ψ( x 1 , . . . , x N , t ) ˆ i ¯ = H el ( x 1 , . . . , x N ) − ˆ µE ( t ) Ψ( x 1 , . . . , x N , t ) ∂t K • Solution techniques r • One-electron approaches AS=(4,5) • Single-determinant methods N/2 a ........ – TD-HF: Ψ( t ) = ψ 0 ( t ) 2 Ψ( t ) = ψ KS – TD-DFT: ( t ) 0 1 • Multi-determinant methods Ψ( t ) = C 0 ( t ) ψ 0 + � a + � ar C r a ( t ) ψ r ab,rs C rs ab ( t ) ψ rs – TD-CI: ab + · · · – TD-CASSCF: Ψ( t ) = C 0 ( t ) ψ 0 ( t ) + � a ( t ) + � ar C r a ( t ) ψ r ab,rs C rs ab ( t ) ψ rs ab ( t ) + · · · TD-CI: TD-CIS, TD-CIS(D), TD-CISD, . . . TD-CISD ·· N=Full-CI (FCI) TD-CASSCF(N,M): TD-CASSCF (N,N/2) = TD-HF, . . . , TD-CASSCF(N,K) =FCI
EXAMPLE: GROUND STATES FROM TD-CASSCF • Dirac-Frenkel variational principle: C ( t ) , φ n ( t ) • Imaginary-time propagation: TD-CASSCF(6,K) 1D jellium model Molecules: LCAO-MO Li 2 , 6-31G ∗ , N = 6 d=100 a 0 , N = 6, K orbitals -2 -403.5 TD-CASSCF (6,3) CAS (6,3) TD-CASSCF (6,4) -2.1 energy (hartree) CAS (6,4) TD-CASSCF (6,5) CAS (6,5) -404 TD-CASSCF (6,6) CAS (6,6) -2.2 TD-CASSCF (6,7) CAS (6,7) energy (eV) -404.5 -2.3 HF -2.4 -405 -2.5 FCI 0 1 2 3 4 -405.5 imaginary time (fs) 0 0.2 0.4 0.6 0.8 1 time (fs) Convergence to Full-CI M. Nest, T. Klamroth, PS, JCP 122 , 124102 (2005) M. Nest, JTCC 6 , 653 (2007)
EXCITED STATES FROM TD-CASSCF • Excited states by real-time propagation via FT of autocorrelation function via FT of dipole moment � � h � n | ˆ C ∗ n C n e − iE n t/ ¯ h C ∗ n C m e i ( E n − E m ) t/ ¯ � Ψ(0) | Ψ( t ) � = � ˆ µ � ( t ) = µ | m � n n,m 10 1 2, 3 0 4 x-polarized pulse dipole - x z-polarized pulse |FT(< Ψ (t) | Ψ (0)>)| intensity (arb. units) dipole - z 1 1 2, 3 4 0.1 0.01 -9 -8.9 -8.8 -8.7 -8.6 -8.5 -8.4 -8.3 -8.2 0 0.05 0.1 0.15 0.2 0.25 0.3 energy (hartree) excitation energy (hartree) LiH molecule, TD-CASSCF(4,4)/6-31G ∗ M. Nest, R. Padmanaban, PS, JCP 126 , 214106 (2007)
EXCITED STATES FROM TD-CASSCF • Excited states by real-time propagation 1 2, 3 4 dipole - x intensity (arb. units) dipole - z Performance of dipole method (LiH) n = 1 n = 2,3 n = 4 35 35 30 30 Exc. energy = 3.30455 eV Exc. energy = 4.33232 eV Exc. energy = 7.08095 eV 0 0.05 0.1 0.15 0.2 0.25 0.3 25 25 excitation energy (hartree) Error (meV) Error (meV) 20 20 15 15 10 10 5 5 0 0 -5 -5 S ) D ) ) ) S ) D ) ) ) S ) D ) ) ) D 3 4 5 D 3 4 5 D 3 4 5 I S I S I S , , , , , , , , , C C C ( ( ( 4 4 4 4 4 4 4 4 4 S I S I S I C C C ( ( ( ( ( ( ( ( ( I I I C C C M. Nest, R. Padmanaban, PS, JCP 126 , 214106 (2007) • Also: Pulsed laser-driven real-time dynamics F. Remacle, M. Nest, R.D. Levine, PRL 99 , 183902 (2007)
RESPONSE TO LASER PULSES
A SIMPLE EXAMPLE: THE H 2 MOLECULE • The potential curves H H y x z E(t) h , E(t) ν
A SIMPLE EXAMPLE: THE H 2 MOLECULE • TD-CISD (=FCI) treatment: aug-cc-pV5Z; | 0 � → | 1 � laser excitation sin 2 π pulses E z ( t ) = E 0 sin 2 ( πt/ 2 σ ) cos( ω 10 t ) with FWHM σ “long pulse”: σ = 1000 ¯ h/E h “short pulse”: σ = 50 ¯ h/E h µ z (t) µ z ( t ) 1.5 1 1 0.5 0 . 5 0 -0.5 0 -1 -1.5 − 0 . 5 − 1 0.1 0.05 0 500 1000 1500 2000 2500 0 . 004 0 E z (t) 0 -0.05 0 . 002 t 500 -0.1 0 1000 E z ( t ) 1500 2000 − 0 . 002 t 2500 − 0 . 004 1 . 0 1 . 0 Population P i Population P i 0 . 5 0 . 5 0 . 0 0 . 0 1 . 86 1 . 395 0 . 93 0 . 465 0 . 0 1 . 86 1 . 395 0 . 93 0 . 465 0 . 0 E [ E h ] E [ E h ] single-photon, state-to-state multi-photon, wavepacket
LINEAR RESPONSE: POLARIZABILITY OF H 2 • Strategy: Apply E q = E 0 q sin 2 ( πt/ 2 σ ) cos( ωt ) ⇒ µ ind = = α qq ′ E q ′ q • Dynamic: ω � = 0 Kennlinien for H 2 • Static: ω = 0 TD-CISD a Stat. QC b Exp. α � 6.3989 6.303 6.3970 α ⊥ 4.5845 4.913 4.5749 a aug-cc-pVQZ; b FCI/aug-cc-pVQZ µ 2 z, 0 n ω n 0 � SOS: α zz = 2 ω 2 n 0 − ω 2 n � =0
NONLINEAR RESPONSE: HIGHER HARMONICS E ( t ) , µ ind ( t ) − → µ ind ( ω ) , E ( ω ) → FT − • H 2 : Higher harmonics 1HG: polarizability α zz ( − ω, ω ) 3HG: 2nd hyperpolariz. γ zzzz ( − 3 ω, ω, ω, ω ) 5HG: 4th hyperpolarizability . . . crossed fields: elements, e.g. β xyz only odd P. Krause, T. Klamroth, PS, JCP 127 , 034107 (2007)
NONLINEAR RESPONSE: HIGHER HARMONICS • H 2 HHG: The role of diffuse functions HHG cutoff region requires diffuse functions E. Luppi, M. Head-Gordon, Mol. Phys. 110 , 909 (2012)
INCLUSION OF IONIZATION • Ionization in TD-CI E n → E n − i 2Γ n • Polarizability H 2 , bound → bound/unbound transitions TD-CIS/cc-pVTZ σ = 2000 ¯ h/E h S. Klinkusch, PS, T. Klamroth, JCP 131 , 114304 (2009)
INCLUSION OF DISSIPATION: ρ -TDCI • Liouville-von Neumann equation for laser-driven electrons perturbation � ∂ ˆ � ∂ ˆ ∂t = − i ρ ρ h [ ˆ H el − ˆ µE ( t ) , ˆ ρ ] + ¯ ∂t energy relaxation D � �� � � �� � < system coupling, H sb dissipation < system, H s < bath, H dephasing b • Lindblad dissipation, CI eigenstate basis: “ ρ -TDCI” Populations: Diagonal elements of system density operator ˆ ρ n N dρ nn [ − i V Γ � = h [ V np ( t ) ρ pn − ρ np V pn ( t )] + (Γ p → n ρ pp − Γ n → p ρ nn )] n−>m mn dt ¯ p m dipole coupling V mn ( t ) = − µ mn E ( t ) energy relaxation rates Γ n → m dephasing enters ˙ ρ mn via dephasing rates γ mn
INCLUSION OF IONIZATION AND DISSIPATION • The ρ -TD-CI method, and inclusion of ionization ∂ ˆ ∂t = − i ρ �� � � LvN equation H el − i ˆ ˆ W − ˆ µE ( t ) , ˆ ρ + L D ˆ ρ h ¯ • Excitation of H 2 , bound → bound transition 1 |0> | 0 � → | 1 � → | 2 � → | 5 � |1> |2> 0.8 |5> σ 1 , σ 2 , σ 3 = 500 ¯ h/E h |9> Norm TD-CIS(D)/aug-ccpVQZ Population 0.6 0.4 0.9 |11> |12> 0.2 0.8 Free |10> with dissipation 0 0.7 |9> |7> |6> |8> 0.8 0.6 |5> µ 15,z |3> |4> 0.6 0.5 Population |2> E (E h ) |1> 0.4 0.4 µ 01,z 0.3 0.2 with ionization All µ 03,x µ 04,y 0.2 0 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 50 0.1 Time (fs) Time (fs) 0 |0> J.C. Tremblay, S. Klinkusch, T. Klamroth, PS, JCP 134 , 044311 (2011)
TIME-DEPENDENT ELECTRON CORRELATION
TIME-DEPENDENT CORRELATION • Time-dependent correlation energy sin 2 pulse, 3fs, E 0 = 0 . 01, ω = 0 . 15 LiH, TD-CASSCF(4,n)/6-311++G(2df,2p) -7.96 TD-HF (4,2) energy (E h ) -7.98 TD-CASSCF (4,4) Li H + 0.0185 -8 -8.02 E corr ( t ) = E ( t ) − E HF ( t ) -0.015 correlation energy correlation energy (E h ) + 0.0067 -0.02 -0.025 0 1 2 3 4 5 6 time (fs) M. Nest, PS, unpublished
TIME-DEPENDENT CORRELATION • Time-dependent correlation energy sin 2 pulse, 3fs, E 0 = 0 . 025, ω = 0 . 15 LiH, TD-CASSCF(4,n)/6-311++G(2df,2p) Li H E corr ( t ) > 0 !! Nest, PS, unpublished
ELECTRON CORRELATION: OTHER MEASURES • One-electron entropy S and “quantum impurity” C � � � γ 2 � C = 1 − 1 S = − k B Tr γ ln γ N Tr � d 1 d 1 ′ χ ∗ i (1) γ (1 , 1 ′ ) χ j (1 ′ ) γ ij = 1-density matrix (HF orbital basis) • H 2 minimal basis, dynamics of a Hartree-Fock state 1 � , | ψ 2¯ g states | 0 � , | 1 � from determinants ψ HF = | 1¯ 1 � = | 2¯ • Full-CI 1 Σ + 2 2 � 1¯ | 0 � = cos( β/ 2) | 1¯ 1 � + sin( β/ 2) | 2¯ 2 � energy E 0 | 1 � = − sin( β/ 2) | 1¯ 1 � + cos( β/ 2) | 2¯ 2 � energy E 1 • Dynamics of an initial Hartree-Fock state ψ (0) = ψ HF = cos( β/ 2) | 0 � − sin( β/ 2) | 1 � h � � ψ ( t ) = e − iE 1 t/ ¯ cos( β/ 2) e iω 10 t | 0 � − sin( β/ 2) | 1 � ω 10 = ( E 1 − E 0 ) / ¯ h
Recommend
More recommend