Outline Expansion of a function Orthonormal set Expansion of a random function K-L Expansion for periodic and non- periodic functions Response of linear system K-L expansion for Brownian motion ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi Let n (t) be an orthonormal set In the expansion, the coefficients c n become uncorrelated (orthogonal) random X X t t c c t t variables if and only if n (t) are the eigen- n n n n functions of the following Fredholm’s integral equation: T T c c X X t t t t dt dt n n n n 0 0 T T R R t t , , t t t t t t T T xx xx 1 1 2 2 n n 2 2 n n n n 1 1 * * t t t t dt dt 0 0 n n m m nm nm 0 0 ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 1
nm nm Autocorrelation 2 2 2 2 * * E E c c c c E E c c E E c c n n m m n n n n n n R * * R t t , , t t ( ( t t ) ) ( ( t t ) ) xx xx 1 1 2 2 n n n n 1 1 n n 2 2 K-L Expansion converges in mean-square sense: n n R 2 2 2 2 R t t , , t t E E X X t t c c t t 0 0 n n n n xx xx n n n n n n n n ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi Correlation and Spectrum Stationary and Periodic Processes 1 1 R R R R t t t t R Stationary in in t t t t Correlation R t t , , t t e e 0 0 1 1 2 2 xx xx xx xx 1 1 2 2 xx xx 1 1 2 2 n n T T 1 1 2 2 in in t t 1 1 t t e e S Periodic 0 0 Spectrum n n S n n 0 0 T T T T xx xx n n 0 0 T T x c c 2 2 in in t t 1 1 n n E E c c x t t e e o o 2 2 E E X X t t n n n n T T n n T T ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 2
Response of a Linear System Stationary Non-Periodic Processes L t X t n t Linear System i i t t Expansion X X t t e e n n S S d d n( ) = White Noise R t , t 2 S t t nn 1 2 0 1 2 n( ) = White Noise E E n n 1 n 1 n 2 2 1 1 2 2 t Response X t h t n d 0 xx Correlation i i t t 2 t 2 t R R t t t t e e s s d d 1 1 Impulse Response L t h t t xx 1 1 2 2 ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi t t T T L L R R t t , , t t L L h h t t E E n n X X t t d d L L L L t t 2 2 S S t t t t t t dt dt t t xx xx 2 2 t t 2 2 0 0 t t t t 0 0 2 2 2 2 2 2 0 0 L L R R t t , , t t E E n n t t X X t t 2 2 S S h h t t t t 2 2 S S t t t t xx xx 2 2 2 2 0 0 2 2 0 0 T T R R t t , , t t t t dt dt t t i i 0 0 0 0 xx xx 2 2 2 2 2 2 o o i i 0 0 , , 1 1 ,..., ,..., N N 1 1 T T i i 2 2 S S h h t t t t t t dt dt L L t t L L t t | | 0 0 0 0 2 2 2 2 2 2 t t t t t t T T 0 0 ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 3
Concluding Remarks Expansion of a function Orthonormal set Expansion of a random function K-L Expansion for periodic and non- periodic functions Response of linear system K-L expansion for Brownian motion ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 4
Recommend
More recommend