theoretical investigation of possibility to suppress fsr
play

Theoretical investigation of possibility to suppress FSR in specific - PowerPoint PPT Presentation

Theoretical investigation of possibility to suppress FSR in specific dark matter models explaining cosmic positron data Airat Kamaletdinov, Ekaterina Shlepkina, Konstantin Belotsky NRNU MEPhI 10 July 2020 1 / 23 Positron Anomaly Positron


  1. Theoretical investigation of possibility to suppress FSR in specific dark matter models explaining cosmic positron data Airat Kamaletdinov, Ekaterina Shlepkina, Konstantin Belotsky NRNU MEPhI 10 July 2020 1 / 23

  2. Positron Anomaly Positron Anomaly 2 / 23

  3. Positron Anomaly Contradiction with IGRB 3 / 23

  4. Interaction vertex parametrization Interaction vertex parametrization We started by choosing the simplest decay vertices: L “ X ¯ Ψ p a ` b γ 5 q Ψ L “ X µ ¯ Ψ γ µ p a ` b γ 5 q Ψ and Two-body decay Three-body decay Suppression of the photon yield is achieved by σ p X Ñ e ´ e ` γ q σ p X Ñ e ´ e ` q Ñ min where a and b are fixed parameters. 4 / 23

  5. Interaction vertex parametrization Decay into identical positrons Double charged Dark Matter particles model was also considered L C “ X ψ C p a ` b γ 5 q ψ ` X ˚ ψ p a ` b γ 5 q ψ C . X ˚ Ñ e ´ e ´ X Ñ e ` e ` We assume that there are no particles X ˚ in the DM sector. Similar models of heavy double charged DM particles are proposed, for example, in arXiv:1411.365 and arXiv:astro-ph/0511789 5 / 23

  6. Interaction vertex parametrization Independence of photon yield on model parameters For X Ñ e ´ e ` p γ q L “ X ¯ Ψ p a ` b γ 5 q Ψ L “ X µ ¯ Ψ γ µ p a ` b γ 5 q Ψ 2 p a 2 ` b 2 q m 2 4 p a 2 ` b 2 q m 2 |M| 2 2 body X X p a 2 ` b 2 q F p k 1 , k 2 , l q (a 2 ` b 2 q G p k 1 , k 2 , l q |M| 2 p 3 body q σ p e ´ e ` γ q F p k 1 , k 2 , l q G p k 1 , k 2 , l q σ p e ´ e ` q 2 m 2 4 m 2 X X For X Ñ e ` e ` p γ q L “ X Ψ C ˆ O Ψ ` X ˚ Ψ ˆ | in y ” ˆ O Ψ C X | 0 y L “ X ¯ L “ X µ ¯ Ψ C p a ` b γ 5 q Ψ Ψ C γ µ p a ` b γ 5 q Ψ 8 p a 2 ` b 2 q m 2 |M| 2 16 b 2 m 2 p 2 body q X X p a 2 ` b 2 q F p k 1 , k 2 , l q |M| 2 b 2 G p k 1 , k 2 , l q p 3 body q σ p e ` e ` γ q F p k 1 , k 2 , l q G p k 1 , k 2 , l q σ p e ` e ` q 8 m 2 16 m 2 X X 6 / 23

  7. Interaction vertex parametrization Difference of scalar coupling L “ X Ψ p a ` b γ 5 q Ψ in comparison with vector one L “ X µ Ψ γ µ p a ` b γ 5 q Ψ E ` “ ´ e 2 p m 2 ´ 2 m ω ` 2 ω 2 q log p| m ´ 2 E 1 ˇ m ´ 2 p E 1 ` ω q |q ˇ B σ p e ´ e ` γ q{B ω 1 ˇ ˇ ˇ ˇ σ p e ´ e ` q ˇ 4 π 2 m 2 ω ˇ ˇ ˇ E ´ scalar 1 E ` “ ´ e 2 p m 2 ´ 2 m ω ` 2 ω 2 q log p| m ´ 2 E 1 ˇ m ´ 2 p E 1 ` ω q |q ´ 4 E 1 ω ˇ B σ p e ´ e ` γ q{B ω 1 ˇ ˇ ˇ ˇ σ p e ´ e ` q 4 π 2 m 2 ω ˇ ˇ ˇ ˇ E ´ vector 1 7 / 23

  8. Derivative in the interaction vertex Derivative in the interaction vertex Class of interaction vertices which depend on the decaying particle momentum was considered. L “ Ψ γ µ p a ` b γ ν B ν L “ Ψ γ µ p a ` b p γ ν B ν qp γ ρ B ρ q ... q X µ Ψ q X µ Ψ m m n L “ Ψ γ µ p a γ 5 ` b p γ ν B ν q q X µ Ψ ... m Such approach makes it possible to achieve an effect on the photon yield by the parametrization of interaction Lagrangian. p 1 ` � � a ` b ˆ p 2 ˆ a ` b ˆ p 1 u p p 1 q γ µ ´ ¯ u p p 1 q γ µ ´ ¯ p X Ñ e ` e ´ q ñ ¯ v p p 2 q “ ¯ v p p 2 q m m p 2 ` ˆ p 2 ` ˆ a ` b ˆ p 1 ` ˆ l ¯„ ˆ l  u p p 1 q γ µ ´ p X Ñ e ` e ´ γ q ñ ¯ ǫ p l q v p p 2 q p p 2 ` l q 2 ˆ m 8 / 23

  9. Derivative in the interaction vertex For example, for vertex L “ Ψ γ µ p a ` b p γ ν B ν q q X µ Ψ : m E ` “ ´ e 2 p 2 a 2 ` b 2 q m p m 2 ´ 2 m ω ` 2 ω 2 q log p| m ´ 2 E 1 m ´ 2 p E 1 ` ω q |q ´ 8 E 1 ω p a 2 m ` 2 b 2 ω q ˇ B Br p e ` e ´ γ q 1 ˇ ˇ 4 π 2 m 3 ω p 2 a 2 ` b 2 q B ω ˇ E ´ ˇ 1 However, this vertex does not lead to a significant result. Moreover, the class of such vertices is bounded and their extension to arbitrary polynomials f p ˆ p q is impossible since: p ” p 2 “ m 2 p ˆ ˆ p q “ a ` b ˆ m ` c ˆ p m 2 ` d ˆ p ˆ p p ˆ m 3 ` ... ` A γ 5 ` B γ 5 ˆ p ˆ p m ` C γ 5 ˆ p m 2 ` D γ 5 ˆ p ˆ p p ˆ p ˆ p f p ˆ m 3 ` ... “ “ a ` b ˆ m ` c ` d ˆ p m ` ... ` A γ 5 ` B γ 5 ˆ p m ` C γ 5 ` D γ 5 ˆ p p m “ “ p a ` c ` ... q ` p b ` d ` ... q ˆ m ` p A ` C ` ... q γ 5 ` p B ` D ` ... q γ 5 ˆ p p m Thus f p ˆ p q can only be a linear function of ˆ p . 9 / 23

  10. Consideration of loop contributions Consideration of loop contributions The dependences of the coefficients a and b on the decay energies can also be achieved by considering the loop processes. a Ñ F 1 p? s q , b Ñ F 2 p? s q The following processes were considered Corresponding interaction Lagrangians of such models are follows: L � “ X ¯ θ p a ` i b γ 5 q θ ` η ¯ θ p c ` i d γ 5 q θ ` η ¯ ΨΨ θ p c ` i d γ 5 q Ψ ` η ˚ ¯ L △ “ X ¯ θ p a ` i b γ 5 q θ ` η ¯ Ψ p c ` i d γ 5 q θ 10 / 23

  11. Consideration of loop contributions The Passarino and Veltman reduction procedure was used for one-loop integrals, described in detail in https://arxiv.org/abs/1105.4319 . such procedure This procedure consists in reducing single-loop integrals to a linear combination of standard scalar integrals: d D q ż 1 A 0 p m q “ p q 2 ´ m 2 q p 2 π q D d D q ż 1 B 0 p p ; m 1 , m 2 q “ p q 2 ´ m 2 1 qpp q ` p q 2 ´ m 2 p 2 π q D 2 q d D q 1 ż C 0 p p 1 , p 2 ; m 1 , m 2 , m 3 q “ p 2 π q D d 1 d 2 d 3 i ´ 1 ´ p k q 2 ´ m 2 ¯ ÿ d i ” p q ` i k “ 1 11 / 23

  12. Consideration of loop contributions Bubble vertex The functions A 0 , B 0 , C 0 depend quadratically on their arguments. Hence the loop contribution to p X Ñ e ` e ´ q and p X Ñ e ` e ´ γ q turns out to be the same. ´ ¯ p a ` ib γ 5 qp ˆ q ` m qp c ` id γ 5 qp ˆ Tr q ` ˆ p 1 ` m q d D q ż ˆ O “ “ p q 2 ´ m 2 qpp q ` p 1 q 2 ´ m 2 q p 2 π q D 4 p q 2 ´ p 1 ¨ q qp ac ` bd qq d D q 4 m 2 p ac ´ bd q d D q ż ż “ p q 2 ´ m 2 qpp q ` p 1 q 2 ´ m 2 q ` p q 2 ´ m 2 qpp q ` p 1 q 2 ´ m 2 q “ p 2 π q D p 2 π q D A 0 p m q ` m 2 B 0 p p 1 , m , m q ´ p 2 ´ ¯ “ 4 m 2 p ac ´ bd q B 0 p p 1 , m , m q ` 4 p ac ` bd q 1 2 B 0 p p 1 , m , m q 12 / 23

  13. Consideration of loop contributions Triangle diagram (two-body decay) d D q q ` m 1 qp a ` ib γ 5 q i p ˆ „ ż i p ˆ q ´ ˆ p 1 ´ ˆ p 2 ` m 3 qp´ i q  p c ` id γ 5 q 3 q p c ` id γ 5 q i M “ ¯ u v “ p q 2 ´ m 2 1 qpp q ´ p 1 q 2 ´ m 2 2 qpp q ´ p 1 ´ p 2 q 2 ´ m 2 p 2 π q D i ´ 1 d D q ˆ f 1 p q q ´ i ˆ f 2 p q q γ 5 „ ż  p k q 2 ´ m 2 ÿ “ i ¯ u p p 1 q v p p 2 q ; d i ” p q ´ i p 2 π q D d 1 d 2 d 3 k “ 1 f 1 p q q “ a p c 2 ` d 2 q ´ ¯ ` a p c 2 ´ d 2 q ´ ¯ ˆ m 1 p ˆ q ´ ˆ p 1 ´ ˆ p 2 q ` m 3 ˆ q q p ˆ ˆ q ´ ˆ p 1 ´ ˆ p 2 q ` m 1 m 3 ` ´ ¯ ` 2 bcd q p ˆ ˆ q ´ ˆ p 1 ´ ˆ p 2 q ´ m 1 m 3 f 2 p q q “ b p c 2 ` d 2 q ´ ¯ ` b p c 2 ´ d 2 q ´ ¯ ˆ m 1 p ˆ q ´ ˆ p 1 ´ ˆ p 2 q ´ m 3 ˆ q p ˆ q ´ ˆ p 1 ´ ˆ p 2 q ´ m 1 m 3 ´ q ˆ ´ ¯ ´ 2 acd ˆ q p ˆ q ´ ˆ p 1 ´ ˆ p 2 q ` m 1 m 3 13 / 23

  14. Consideration of loop contributions Calculations ( X Ñ e ` e ´ ) The following vertex factors should be integrated: f ˘ p q q “ H p˘q p c 2 ` d 2 q ` H p˘q p c 2 ´ d 2 q ´ ¯ ´ ¯ ˆ m 1 p ˆ q ´ ˆ p 1 ´ ˆ p 2 q ˘ m 3 ˆ q q p ˆ ˆ q ´ ˆ p 1 ´ ˆ p 2 q ˘ m 1 m 3 ˘ ´ ¯ ˘ 2 H p¯q cd ˆ q p ˆ q ´ ˆ p 1 ´ ˆ p 2 q ¯ m 1 m 3 где t H p`q , H p´q u ” t a , b u Let’s define the following vector integral d D q q µ ż C µ p p 1 , p 2 ; m 1 , m 2 , m 3 q “ p q 2 ´ m 2 1 qpp q ` p 1 q 2 ´ m 2 2 qpp q ` p 1 ` p 2 q 2 ´ m 2 p 2 π q D 3 q From Lorentz-invariance of this integral it follows that C µ p p 1 , p 2 ; m 1 , m 2 , m 3 q “ p µ 1 C 1 p p 1 , p 2 ; m 1 , m 2 , m 3 q ` p µ 2 C 2 p p 1 , p 2 ; m 1 , m 2 , m 3 q d D q ż ˆ q “ γ µ C µ “ ´ ˆ u p p 1 q γ µ C µ v p p 2 q “ 0 ñ p 1 C 1 ´ ˆ p 2 C 2 ñ ¯ p 2 π q D d 1 d 2 d 3 Thus the first term of vertex factors does not contribute to the two-body decay 14 / 23

  15. Consideration of loop contributions f ˘ p q q “ H p˘q p c 2 ´ d 2 q ´ ¯ ´ ¯ ˆ q p ˆ ˆ q ´ ˆ p 1 ´ ˆ p 2 q ˘ m 1 m 3 ˘ 2 H p¯q cd q p ˆ ˆ q ´ ˆ p 1 ´ ˆ p 2 q ¯ m 1 m 3 q ” q 2 q 2 d D q d D q ¯ ż q ˆ ˆ ż “ “ d 1 C 0 p p 1 , p 2 ; m 1 , m 2 , m 3 q` 1 p 2 π q D d 1 d 2 d 3 p 2 π q D d 1 d 2 d 3 ` m 2 1 C 0 p p 1 , p 2 ; m 1 , m 2 , m 3 q “ B 0 p p 2 ; m 2 , m 3 q ` m 2 1 C 0 p p 1 , p 2 ; m 1 , m 2 , m 3 q d D q ˆ 1 ˙ ż q Ñ q ` p 1 d 1 C 0 p p 1 , p 2 ; m 1 , m 2 , m 3 q “ “ “ “ B 0 p p 2 ; m 2 , m 3 q p 2 π q D d 2 d 3 � d D q p 1 ´ � ż q p ˆ ˆ q ´ ˆ p 2 q ˆ ¯ M M ´ p 2 u p p 1 q v p p 2 q “ 1 , 2 “ 0 “ ¯ u p p 1 q B 0 p p 2 ; m 2 , m 3 q` 2 ¯ p 2 π q D d 1 d 2 d 3 ¯ ` m 2 1 C 0 p p 1 , p 2 ; m 1 , m 2 , m 3 q ` 2 p p 1 ¨ p 2 q C 2 p p 1 , p 2 ; m 1 . m 2 . m 3 q v p p 2 q “ ´ ¯ B 0 p p 1 ` p 2 ; m 1 , m 3 q ` m 2 “ ¯ u p p 1 q 2 C 0 p p 1 , p 2 ; m 1 , m 2 , m 3 q v p p 2 q 1 1 ´ ✓ ¯ ´ ✓ ¯ p m 2 2 ´ m 2 p 2 3 C 2 “ 1 q C 0 ` B 0 p p 1 ` p 2 ; m 1 , m 3 q ´ B 0 p p 2 ; m 2 , m 3 q 2 p p 1 ¨ p 2 q B 0 p? s ; m 1 , m 3 q ` p m 2 ñ F ˘ “ H p˘q p c 2 ´ d 2 q ´ ¯ 2 ˘ m 1 m 3 q C 0 p p 1 , p 2 ; m 1 , m 2 , m 3 q ˘ B 0 p? s ; m 1 , m 3 q ` p m 2 ´ ¯ ˘ 2 H p¯q 2 ¯ m 1 m 3 q C 0 p p 1 , p 2 ; m 1 , m 2 , m 3 q 15 / 23

Recommend


More recommend