The Three Reflections Theorem Christopher Tuffley Institute of Fundamental Sciences Massey University, Palmerston North 24th June 2009 Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 1 / 19
Outline The Three Two-dimensional Geometries 1 Euclidean Spherical Hyperbolic The Three Reflections Theorem 2 Statement Proof Orientation preserving isometries 3 Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 2 / 19
The Three Two-dimensional Geometries Euclidean The Euclidean plane The Euclidean plane is E 2 = { ( x , y ) | x , y ∈ R } , with the Euclidean distance � � � ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 . d ( x 1 , y 1 ) , ( x 2 , y 2 ) = ( x 2 , y 2 ) d ( x 1 , y 1 ) Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 3 / 19
The Three Two-dimensional Geometries Euclidean Arc length If γ : [ a , b ] → E 2 is a smooth curve then � b length ( γ ) = ds , a where ds 2 = dx 2 + dy 2 is the infinitesimal metric . γ ( b ) �� dx � � 2 � 2 + dy γ ( a ) | γ ′ ( t ) | = dt dt The distance from P to Q is the infimum of { length ( γ ) | γ a curve from P to Q } . Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 4 / 19
The Three Two-dimensional Geometries Euclidean Euclidean isometries Definition An isometry is a distance preserving map. Euclidean examples Orientation preserving: Orientation reversing: Translations Reflections Rotations Glide reflections Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 5 / 19
The Three Two-dimensional Geometries Euclidean Euclidean isometries Definition An isometry is a distance preserving map. Euclidean examples Orientation preserving: Orientation reversing: Translations Reflections Rotations Glide reflections Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 5 / 19
The Three Two-dimensional Geometries Euclidean Euclidean isometries Definition An isometry is a distance preserving map. Euclidean examples Orientation preserving: Orientation reversing: Translations Reflections Rotations Glide reflections Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 5 / 19
The Three Two-dimensional Geometries Euclidean Euclidean isometries Definition An isometry is a distance preserving map. Euclidean examples Orientation preserving: Orientation reversing: Translations Reflections Rotations Glide reflections Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 5 / 19
The Three Two-dimensional Geometries Euclidean Euclidean isometries Definition An isometry is a distance preserving map. Euclidean examples Orientation preserving: Orientation reversing: Translations Reflections Rotations Glide reflections Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 5 / 19
The Three Two-dimensional Geometries Spherical Spherical geometry Restrict the 3-dimensional Euclidean metric ds 2 = dx 2 + dy 2 + dz 2 to the unit sphere S 2 in R 3 . Arc length on S 2 is given by (3d) Euclidean arc length. Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 6 / 19
The Three Two-dimensional Geometries Spherical Lines in spherical geometry Lines in spherical geometry are great circles : the intersection of a plane through the origin with S 2 . Great circles are geodesics: locally length minimising curves. Any two lines (great circles) intersect in a pair of antipodal points. Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 7 / 19
The Three Two-dimensional Geometries Spherical Lines in spherical geometry Lines in spherical geometry are great circles : the intersection of a plane through the origin with S 2 . Great circles are geodesics: locally length minimising curves. Any two lines (great circles) intersect in a pair of antipodal points. Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 7 / 19
The Three Two-dimensional Geometries Spherical Spherical isometries Spherical isometries include rotations about a diameter reflections in a plane through the origin. A reflection in a plane through the origin may be regarded as a reflection in the corresponding great circle, i.e. spherical line. Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 8 / 19
The Three Two-dimensional Geometries Hyperbolic Hyperbolic geometry: the upper half plane model Hyperbolic geometry may be modelled by the upper half plane H 2 = { ( x , y ) ∈ R 2 | y > 0 } , with metric ds 2 = dx 2 + dy 2 . y 2 y The vectors shown all have the same hyperbolic length. Hyperbolic angle in H 2 co-incides x ������������������ ������������������ with Euclidean angle. ������������������ ������������������ ������������������ ������������������ Other models exist, including the conformal disc model . Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 9 / 19
The Three Two-dimensional Geometries Hyperbolic Lines in the upper half plane model A line in H 2 is a vertical ray x = constant, or a semi-circle with centre on the x -axis. There is a unique line through any pair of distinct points. ������������������ ������������������ ������������������ ������������������ ������������������ ������������������ Disjoint lines may be asymptotic or ultraparallel . The x -axis together with ∞ forms the circle at infinity . Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 10 / 19
The Three Two-dimensional Geometries Hyperbolic Lines in the upper half plane model A line in H 2 is a vertical ray x = constant, or a semi-circle with centre on the x -axis. There is a unique line through any pair of distinct points. ������������������ ������������������ ������������������ ������������������ ������������������ ������������������ Disjoint lines may be asymptotic or ultraparallel . The x -axis together with ∞ forms the circle at infinity . Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 10 / 19
The Three Two-dimensional Geometries Hyperbolic Lines in the upper half plane model A line in H 2 is a vertical ray x = constant, or a semi-circle with centre on the x -axis. There is a unique line through any pair of distinct points. ������������������ ������������������ ������������������ ������������������ ������������������ ������������������ Disjoint lines may be asymptotic or ultraparallel . The x -axis together with ∞ forms the circle at infinity . Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 10 / 19
The Three Two-dimensional Geometries Hyperbolic Hyperbolic isometries The metric ds 2 = dx 2 + dy 2 is preserved by y 2 Horizontal translations Reflections in vertical rays e.g. z �→ − ¯ z �→ z + c , c real z Euclidean dilations Inversions in semi-circular lines e.g. z �→ 1 / ¯ z �→ ρ z , ρ > 0 z i 1 ������������������������������� ������������������������������� ������������������������������� ������������������������������� ������������������������������� ������������������������������� Christopher Tuffley (Massey University) The Three Reflections Theorem 24th June 2009 11 / 19
Recommend
More recommend