Reflections for quantum query algorithms Reflections Ben Reichardt University of Waterloo
Reflections for quantum query algorithms Reflections Ben Reichardt University of Waterloo
Reflections for quantum query algorithms Reflections Theorem: An optimal quantum query algorithm for evaluating any boolean function can be built out of two fixed reflections R 1 R 2 R 1 R 2 R 1 R 2
Goal: Evaluate f: {0,1} n → {0,1} using | x ∈ { 0 , 1 } n | j x j
j 1 x j 1 j 2 x j 2 y y r r e e u u x x q q … U 0 U 1 U T f ( x )
Query complexity models : • Deterministic • Randomized - bounded-, zero- or one-sided error • Nondeterministic (Certificate complexity) • Quantum
Quantum query complexity | x ∈ { 0 , 1 } n | ( − 1) x j | j � | j � | 1 � + | 2 � �→ ( − 1) x 1 | 1 � + ( − 1) x 2 | 2 � y y r r e e u u x x q q … U 0 U 1 U T f ( x ) w/ prob. ≥ 2/3
Theorem: An optimal quantum query algorithm for evaluating any boolean function can be built out of two fixed reflections R O x R O x R O x
U 0 O x U 1 O x U 2 O x Clearly, w.l.o.g., • may assume U t is independent of t T � | t + 1 � � t | ⊗ U t + c.c. U = t =0 • or, may assume U t is a reflection ∀ t � 1 | ⊗ U † R t = | 1 � � 0 | ⊗ U t + | 0 � t
Theorem: An optimal quantum query algorithm for evaluating any boolean function can be built out of two fixed reflections R O x R O x R O x Theorem: The general adversary lower bound on quantum query complexity is also an upper bound
⇒ A certificate for input x is a set of positions whose values fix f. (Given a certificate for the input, it suffices to read those bits) Input For f=OR: Minimal certificate 00110 {3} 00000 {1,2,3,4,5}
� C ( f ) = max p x [ j ] min { � p x ∈ { 0 , 1 } n } x j � p x [ j ] p y [ j ] ≥ 1 if f ( x ) � = f ( y ) s.t. j : x j � = y j � p x [ j ] 2 Adv( f ) = max min { � p x ∈ R n } x j � p x [ j ] p y [ j ] ≥ 1 if f ( x ) � = f ( y ) s.t. j : x j � = y j Adv( f ) is a semi-definite program (SDP)
• Adversary method 1 − 2 √ ǫ (1 − ǫ ) Q ǫ ( f ) ≥ Adv( f ) 2 • Bennett, Bernstein, Brassard, Vazirani 9701001 • Ambainis ’00 • Høyer, Neerbek, Shi ’02 • Ambainis 0305028 • Barnum, Saks & Szegedy ’03 • Laplante & Magniez 0311189 • Zhang 0311060 • Barnum, Saks ’04 • Š palek & Szegedy 0409116 [BBCMW 9802049]
General adversary bound � Adv ± ( f ) = p x [ j ] 2 max min { � p x ∈ R n } x j � p x [ j ] p y [ j ] = 1 if f ( x ) � = f ( y ) s.t. j : x j � = y j [Høyer, Lee, Š palek 0611054]
General adversary bound u xj � 2 � Adv ± ( f ) = � � min max x { � u xj ∈ R m } j � � u xj , u yj � = 1 if f ( x ) � = f ( y ) s.t. j : x j � = y j [Høyer, Lee, Š palek 0611054]
Theorem: The general adversary lower bound on quantum query complexity is also an upper bound u xj � 2 � Adv ± ( f ) = � � min max x { � u xj ∈ R m } j � � u xj , u yj � = 1 if f ( x ) � = f ( y ) s.t. j : x j � = y j 1. Simple understanding of quantum query complexity: • No unitaries, measurements, or time dependence • Equivalent to span programs [Karchmer, Wigderson ’93] Span programs Quantum algorithms ≈ query complexity witness size (up to a constant factor, for boolean functions)
Query complexity under composition g • Deterministic = D ( f ) D ( g ) g • Certificate ≤ C ( f ) C ( g ) f . . • Randomized ≤ R ( f ) R ( g ) O (log n ) . g Theorem: Adv ± ( f ◦ � g ) = Adv ± ( f )Adv ± ( g ) [HL Š ’06, R’09] � � ⇒ Q ( f ◦ � g ) = Θ Q ( f ) Q ( g ) “Composition” of optimal algorithms for f and for g via tensor product of SDP vector solutions Characterizes query complexity for read-once formulas Q ( f 1 ◦ · · · ◦ � Adv ± ( f 1 ) · · · Adv ± ( f d ) � � f d ) = Θ
A. Query model B. Adversary lower bounds C. Spectra of reflections D. Adversary upper bound Q ( f ) = Θ (Adv ± ( f ))
R = 2 s S = 2 t n i o p Π R( Π ) points R( Δ ) θ Δ points R( Π ) R( Δ ) is a rotation by angle 2 θ , eigenvalues e ±2i θ
Two subspaces will not generally lie at a fixed angle Π Δ
Two subspaces will not generally lie at a fixed angle Π Δ Jordan’s Lemma (1875) Any two projections can be simultaneously block-diagonalized with blocks of dimension at most two
Two subspaces will not generally lie at a fixed angle Π Δ Jordan’s Lemma (1875) 0 0 · · · R ( Π ) R ( ∆ ) = cos 2 θ − sin 2 θ 0 0 cos 2 θ sin 2 θ · · · 0 0
Effective Spectral Gap Lemma: • Let P Θ be the projection onto eigenvectors of R( Π )R( Δ ) with phase less than 2 Θ in magnitude • Then for any v with Δ v = 0, � � � P Θ Π � v � ≤ Θ � � v � � Π v Π � v θ ∆
Effective Spectral Gap Lemma: • Let P Θ be the projection onto eigenvectors of R( Π )R( Δ ) with phase less than 2 Θ in magnitude • Then for any v with Δ v = 0, � � � P Θ Π � v � ≤ Θ � � v � Π � � Π v v Π � v Π � v θ > Θ θ ≤ Θ ∆ ∆ P Θ Π � P Θ Π � v = Π � v = 0 v
Effective Spectral Gap Lemma: • Let P Θ be the projection onto eigenvectors of R( Π )R( Δ ) with phase less than 2 Θ in magnitude • Then for any v with Δ v = 0, � � � P Θ Π � v � ≤ Θ � � v � Proof: Jordan’s Lemma ⇒ Up to a change in basis, � � β | ⊗ ( 1 0 ∆ = β | β � 0 0 ) cos 2 θ β � � sin θ β cos θ β � β | β � � β | ⊗ Π = sin 2 θ β sin θ β cos θ β � β d β | β � ⊗ ( 0 ∆ | v � = 0 ⇒ | v � = 1 ) � � � cos θ β ⇒ Π | v � = d β | β � ⊗ sin θ β P Θ � sin θ β : | θ β | ≤ Θ β
A. Query model B. Adversary lower bounds C. Spectra of reflections D. Adversary upper bound Q ( f ) = Θ (Adv ± ( f ))
The algorithm: 1. Begin with an SDP solution: � � u xj , u yj � = 1 if f ( x ) � = f ( y ) j : x j � = y j 2. Let Δ = projection to the span of the vectors � 1 | 0 � + j | j � | u yj � | y j � √ A ± 10 with f(y)=1 3. Starting at , alternate R( Δ ) with the input oracle | 0 �
� � 1 � | 0 � + j | j, u yj , y j � � � u xj , u yj � = 1 if f ( x ) � = f ( y ) √ A ± 10 ∆ = Proj : f ( y ) = 1 j : x j � = y j Lemma: v ∈ ∆ ⊥ ⇒ � P Θ Π � Π x = | 0 � � 0 | + P j | j � � j | ⊗ I ⊗ | x j � � x j | v � ≤ Θ � � v � � The analysis: Case f(x)=1: | 0 � close to � 1 | 0 � + j | j � | u xj � | x j � √ A ± 10 ⇒ doesn’t move!
� � 1 � | 0 � + j | j, u yj , y j � � � u xj , u yj � = 1 if f ( x ) � = f ( y ) √ A ± 10 ∆ = Proj : f ( y ) = 1 j : x j � = y j Lemma: v ∈ ∆ ⊥ ⇒ � P Θ Π � Π x = | 0 � � 0 | + P j | j � � j | ⊗ I ⊗ | x j � � x j | v � ≤ Θ � � v � � The analysis: Case f(x)=1: Case f(x)=0: | 0 � | 0 � close to = √ A ± � � � � 1 | 0 � − 10 | j, u xj , ¯ x j � | 0 � + j | j � | u xj � | x j � Π x √ A ± 10 j ⇒ doesn’t move! = v ∈ ∆ ⊥ � ⇒ Ω (1/Adv ± ) effective spectral gap
Theorem: Optimal quantum Theorem: The general query algorithms can be built out adversary bound on quantum of two alternating reflections query complexity is tight Summary R O x R O x R O x Corollary: Characterization of Corollary: Quantum query quantum query complexity for algorithms are equivalent to read-once boolean formulas. span programs. Strong direct-product theorems? Open problems ✓ Query complexity for non-boolean functions and state generation? Composition for non-boolean functions? Upper and lower bounds for zero-error quantum query complexity? Tight characterizations for communication complexity?
Recommend
More recommend