the the radi radiation on do dose me meas asure rement
play

The The radi radiation on do dose me meas asure rement for - PowerPoint PPT Presentation

The The radi radiation on do dose me meas asure rement for the for the cohe ohere rent X-ray sca y scatte teri ring ng b beamline mline i in TPS PS A. Y. Chen, J.C. Liu National Synchrotron Radiation Research Center, Hsinchu,


  1. The The radi radiation on do dose me meas asure rement for the for the cohe ohere rent X-ray sca y scatte teri ring ng b beamline mline i in TPS PS A. Y. Chen, J.C. Liu National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan

  2. Phase-I

  3. Beamline shielding  Bremsstrahl hlun ung: g: col ollimator, stopp opper, local al shieldi ding. ng. Ray y Tracing, ng, Mont Monte-Carlo cod ode: F FLUKA  Synchr hrot otron: on: hut hutch, shi hielding ng enc nclosure, exc xclusion zone one. Ana nalytical code ode: STAC8 0.5 µ Sv/  Less tha han 0. v/h @a @accessible regi gion

  4. Bremsstrahlung Shielding and PE enclosure X-ray

  5. Secondary Bremsstrahlung Shielding Secondary Bremsstrahlung shielding Bremsstrahlung collimator 15 ˚

  6. The Coherent X-ray Scattering Beamline

  7. The Coherent X-ray Scattering Beamline

  8. The Coherent X-ray Scattering Beamline

  9. 1 st Survey - Gamma-ray dose rate 0.67@150mA 0.54@200mA 1.60@250mA End wall: BG Downstream of DCM 0.3 ~ 0.6 @200mA 0.3 ~ 0.7 @250mA Power rack:0.4@250mA Sliding door 0.2 ↓@ 150mA 0.2 ↓@ 200mA<gap : 0.4> 0.6 @250mA<gap : 0.9> Dose rate unit: μ Sv/h, using 451P ion chamber

  10. Copper Synchrotron Mask

  11. Gamma-ray dose rate Beam current 200mA and 300 mA, changing front-end slits gap: 0, 0.5, 1, 2, 3, 4mm n+ γ detector γ 1.0@200mA slit 4x4 0.6@200mA slit 2x2 n+ γ detector --------------------------- 2.5@300mA slit 4x4 1.4@300mA slit 2x2 0.30@200mA slit 4x4 0.3@200mA slit 4x4 0.40@200mA slit 4x4 0.20@200mA slit 2x2 0.2@200mA slit 2x2 0.25@200mA slit 2x2 ------------------------ ------------------------ ------------------------ 0.60@300mA slit 4x4 0.8@300mA slit 4x4 0.90@300mA slit 4x4 0.50@300mA slit 2x2 0.5@300mA slit 2x2 0.60@300mA slit 2x2 0.20@300mA slit 0.5x0.5 0.3@300mA slit 0.5x0.5 0.22@300mA slit 0.5x0.5 Dose rate unit: μ Sv/h, using 451P ion chamber

  12. Gamma & Neutron dose due to different slit opening and current

  13. Dose @ 90 deg. Dose @ 0 deg. Detector at TPS-25A 90° 200mA Detector at TPS-25A 0° 200mA 0.5 0.8 gamma gamma 0.4 dose rate ( μ Sv/h) y = 0.1164x + 0.1046 y = 0.0663x + 0.1123 dose rate ( μ Sv/h) neutron 0.6 neutron 0.3 0.4 0.2 0.2 0.1 0 0 0 1 2 3 4 5 0 1 2 3 4 5 slit opening gap (mm) slit opening gap (mm) Detector at TPS-25A 0° 300mA Detector at TPS-25A 90° 300mA 1.2 1 gamma gamma y = 0.2086x + 0.2299 y = 0.1764x + 0.1479 1 0.8 dose rate ( μ Sv/h) dose rate ( μ Sv/h) neutron neutron 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 1 2 3 4 5 0 1 2 3 4 5 slit opening gap (mm) slit opening gap (mm)

  14. Mask shielding for the Coherent X-ray Scattering beamline Lead 5cm in thickness Beam direction Lead 10cm in 15cm PE next thickness to 5cm Lead

  15. Mask Shielding & Collimator

  16. Dose rate after shielding enhancement ~0.25 μ Sv/h (cryogenic tank) detector Beam 300 mA, slit opening in 2 x 2 mm

  17. 451P inside optical hutch – gamma-ray dose rate behind the enhanced local shielding

  18. Gamma & Neutron dose rate at lateral position after enhancing shielding Detector at TPS-25A 90° 300mA 1 gamma 0.8 dose rate ( μ Sv/h) neutron total dose 0.6 0.4 0.2 0 0 1 2 3 4 5 slit opening gap (mm)

  19. Simulation results – Gamma-ray µ Sv/h@1ntorr,300mA Mea. bg 0.11 ± 0.25% 0.15 ± 0.7% Mea. 0.25

  20. Simulation results – Neutron µ Sv/h@1ntorr,300mA 0.023 ± 0.36% Mea. 0.05 0.008 ± 0.67%

  21. Conclusion  The preliminary study shows the design of collimator, stopper, hutch and the secondary bremsstrahlung collimator are work.  The modification of the optical elements and components might challenge the effectiveness of the shielding, especially for those narrowing or shaping synchrotron light (also the bremsstrahlung) at collimator upstream.  The mask with a narrow penetration is really the true collimator. For it’s at the beginning part of the hutch, the enhanced shielding is very helpful in mitigating the dose rate around the hutch.  The dose around the authorized TPS beamlines obeys the criteria well after the work.

  22. Thanks for your attention

Recommend


More recommend