the tempered multistable approach and asset return
play

The Tempered Multistable Approach and Asset Return Modeling Olivier - PowerPoint PPT Presentation

The Tempered Multistable Approach and Asset Return Modeling Olivier Le Courtois Professor of Finance and Insurance EM Lyon Business School 1 Outline of the Talk 1. Bibliography 2. Beyond Lvy Processes 3. Series Representations 4.


  1. The Tempered Multistable Approach and Asset Return Modeling Olivier Le Courtois Professor of Finance and Insurance EM Lyon Business School 1

  2. Outline of the Talk 1. Bibliography 2. Beyond Lévy Processes 3. Series Representations 4. Dependence 5. Moments and Risk Indicators 6. General Properties 7. Illustration 2

  3. Bibliography ➠ Madan and Milne, MF [1991] ➠ Barndorff-Nielsen, FS [1998] ➠ Eberlein, Keller and Prause, JoB [1998] ➠ Carr, Geman, Madan and Yor, JoB [2002] ➠ Carr, Geman, Madan and Yor, MF [2003] ➠ Falconer and Lévy-Véhel, JTP [2009] ➠ Lévy-Véhel and Liu, WP [2013] 3

  4. Beyond Lévy Processes stable process -> multistable process : tail parameter α -> α ( t ) so that : 1 1 Lévy measure x 1+ α -> x 1+ α ( t ) 4

  5. Beyond Lévy Processes Multivariate characteristic function of the independent increments multistable process :   d α ( s ) � θ j L II ( t j ) i − � � � � d j =1 θ j 1 [0 ,tj ] ( s ) ds . � �   j =1  e  = e E � �     This is an additive process. 5

  6. Beyond Lévy Processes Multivariate characteristic function of the field-based multistable process :   1 /α ( tj ) C m � + ∞ α ( tj ) sin 2   − 2 � � θ j 2 y 1 /α ( tj ) 1 [0 ,tj ] ( x )  dy dx m     [0 ,T ] 0 � i θ j L FB ( t j )  j =1  j =1   = e E  e   This process has dependent non-stationary increments... ... but still Pareto-like 6

  7. Beyond Lévy Processes Univariate characteristic function of the independent increments tempered multistable process : C � t � ( M − iθ ) Y ( v ) − M Y ( v ) +( G + iθ ) Y ( v ) − G Y ( v ) � 0 Γ( − Y ( v )) dv ϕ Z II ( t ) ( θ ) = e 7

  8. Beyond Lévy Processes Univariate characteristic function of the field-based tempered multistable process : � ( M − iθ ) Y ( t ) − M Y ( t ) +( G + iθ ) Y ( t ) − G Y ( t ) � tC Γ( − Y ( t )) ϕ Z FB ( t ) ( θ ) = e 8

  9. Beyond Lévy Processes First goal : obtain the multivariate characteristic functions of these processes Second goal : study their properties and applications in finance 9

  10. Series Representations Using Rosiński [2007]’s results, we have the following series representation for the CGMY process when Y ∈ (0 , 1) : � Γ j Y  e j V 1 /Y  � − 1 /Y ∞ j � X ( t ) =  1 ( U j ≤ t ) , 0 < t ≤ T, γ j ∧   M + G + γ j M − G 2 CT  j =1 2 2 where Γ j is an arrival time of a Poisson process with unit arrival rate, U j is a uniform random variable on [0 , T ] , V j is a uniform random variable on [0 , 1] , e j is a standard exponential random variable, and γ j is a random variable with distribution P ( γ j = 1) = P ( γ j = − 1) = 1 / 2 . All these random variables are independent. 10

  11. Series Representations Then, when Y ∈ [1 , 2) : � Γ j Y  e j V 1 /Y  � − 1 /Y ∞ j � X ( t ) = γ j  1 ( U j ≤ t ) + t η, 0 < t ≤ T, ∧   M + G + γ j M − G  2 CT j =1 2 2 where, for Y ∈ (1 , 2) : M Y − 1 − G Y − 1 � � η = − Γ(1 − Y ) C and for Y = 1 : M Y − 1 ln( M ) − G Y − 1 ln( G ) M Y − 1 − G Y − 1 � � � � η = (2 κ +ln(2 T )) C + C and where κ is the Euler constant and x ∧ y stands for min( x, y ) . 11

  12. Series Representations For the independent increments tempered multistable process : e j V 1 /Y ( U j )   � − 1 /Y ( U j ) ∞ � Γ j Y ( U j ) j � Z II ( t ) = γ j  1 ( U j ≤ t ) , 0 < t ≤ T, ∧   M + G + γ j M − G  2 CT j =1 2 2 12

  13. Series Representations For the field-based tempered multistable process :  e j V 1 /Y ( t )  � − 1 /Y ( t ) ∞ � Γ j Y ( t ) j � Z FB ( t ) = γ j  1 ( U j ≤ t ) , 0 < t ≤ T, ∧   M + G + γ j M − G  2 CT j =1 2 2 13

  14. Series Representations FB-CGMY simulation experiment with T = 20 , C = 1 , G = 30 , M = 30 and Y ( T ) = 0 . 5 : 10 3 10 4 10 5 10 6 10 7 j max Z FB ( T ) 0.83353 0.90376 0.89712 0.89714 0.89714 14

  15. Dependence Multivariate char. function of the FB-CGMY process : K   � i θkhM ( tk ) 1 u ≤ tk + ∞ + ∞ T 1 1 e − g   � � � � k =1  1 − e  dgdvdxdu  K    2 T � θ k Z FB ( t k ) i u =0 x =0 v =0 g =0   E  e k =1  = e   K   � − i θkhG ( tk ) 1 u ≤ tk T + ∞ 1 + ∞ 1 e − g � � � �   k =1  1 − e  dgdvdxdu   2 T u =0 x =0 v =0 g =0 × e �� xY ( t ) � � − 1 /Y ( t ) ∧ gv 1 /Y ( t ) where h M ( t ) = . 2 CT M 15

  16. Dependence Let s < t . The correlation between the increments Z FB ( t ) − Z FB ( s ) and Z FB ( t + δ ) − Z FB ( s + δ ) satisfies : ∂η (0 , 0) − ∂ 2 Ψ ∂ Ψ ∂θ (0 , 0) ∂ Ψ ∂θ∂η (0 , 0) ρ s,t ( δ ) = �� ∂ Ψ � 2 − ∂ 2 Ψ �� ∂ Ψ � 2 − ∂ 2 Ψ ∂θ (0 , 0) ∂θ 2 (0 , 0) ∂η (0 , 0) ∂η 2 (0 , 0) where θ = θ 1 and η = θ 2 . 16

  17. Dependence Let us assume : s t M G C T 0 1 60 40 1 20 and : Y ( t, a ) = 0 . 1 + 0 . 8 (1 − e − at ) 17

  18. Dependence 0.28 a=0.1 0.26 a=0.2 a=0.5 0.24 Correlation 0.22 0.2 0.18 0.16 1 1.5 2 2.5 3 3.5 4 4.5 5 Lag 18

  19. Dependence Let us assume : s t M G C T 0 1 50 45 1 20 and : Y ( t, a ) = 0 . 1 + 0 . 8 e − at 19

  20. Dependence 0.05 0 −0.05 a=1.4 a=1.7 −0.1 a=2 Correlation −0.15 −0.2 −0.25 −0.3 −0.35 −0.4 1 1.5 2 2.5 3 3.5 4 4.5 5 Lag 20

  21. Moments and Risk Indicators The first four moments of the field-based tempered multistable process are given by : 1 1 � � Mean ( Z FB ( t )) = Ct Γ(1 − Y ( t )) , M 1 − Y ( t ) − G 1 − Y ( t ) 1 1 � � Variance ( Z FB ( t )) = Ct Γ(2 − Y ( t )) M 2 − Y ( t ) + , G 2 − Y ( t ) 21

  22. Moments and Risk Indicators and : � 1 1 � Ct Γ(3 − Y ( t )) M 3 − Y ( t ) − G 3 − Y ( t ) Skewness ( Z FB ( t )) = �� 3 / 2 , 1 1 � � Ct Γ(2 − Y ( t )) M 2 − Y ( t ) + G 2 − Y ( t ) � 1 1 � Ct Γ(4 − Y ( t )) M 4 − Y ( t ) + G 4 − Y ( t ) Kurtosis ( Z FB ( t )) = 3 + �� 2 , � � 1 1 Ct Γ(2 − Y ( t )) M 2 − Y ( t ) + G 2 − Y ( t ) and so on at higher orders. 22

  23. Moments and Risk Indicators 30 a=0.1 a=10 25 20 Kurtosis 15 10 5 0 0 1 2 3 4 5 Time 23

  24. Moments and Risk Indicators VaR can be computed using for instance : � + ∞ F ( x ) = e αx −∞ e iux Φ( iα − u ) du 2 π α + iu where α can take any positive value. 24

  25. Moments and Risk Indicators Let us assume until the end of this presentation : Y ( t, a, b ) = ae − bt 25

  26. Moments and Risk Indicators 50 Y=0.7 45 a=0.7, b=0.001 a=0.7, b=0.002 40 35 30 VaR 25 20 15 10 5 0 0 50 100 150 200 250 t 26

  27. General Properties The independent increments and the field-based tempered multistable processes are semimartingales. 27

  28. General Properties Let us consider an Esscher transform : e θX t � dQ � = � � dP e θX t E t The characteristic triplet of an II-CGMY process X under P :  0 ,    0 , x 1+ Y ( s ) 1 R − + C e − Mx e Gx  C x 1+ Y ( s ) 1 R +   28

  29. General Properties becomes under Q : � 0 � 1 � t � t e ( G + θ ) x − e Gx e − ( M − θ ) x − e − Mx  dxds + C C dxds,  0 − 1 0 0  x Y ( s ) x Y ( s )   0 , C e ( G + θ ) x x 1+ Y ( s ) 1 R − + C e − ( M − θ ) x   x 1+ Y ( s ) 1 R +   29

  30. Illustration We model the logarithmic return of the SP500 Index by the process X defined as follows : X ( t ) = ( µ − q ) t + Z FB ( t ) where Z FB is a field-based tempered multistable process. The calibration of the model is carried out as below : 2 � � N b � � e iθ j x k � � � N � � � e iθ j X ( t ) � k =1 � � � min E − � � � N b � µ,C,G,M,Y j =1 � � � � � � � � 30

  31. Illustration The calibration is performed in two steps. First, we calibrate the model on daily returns and estimate µ , C , G , M and Y (1 , a, b ) . Then, we calibrate the model on ten-day returns and estimate Y (10 , a, b ) . The knowledge of Y (1 , a, b ) and Y (10 , a, b ) readily gives a and b . 31

  32. Illustration Real(CF)−Data Real(CF)−Data 1 1 Real(CF)−Model Real(CF)−Model Imag(CF)−Data Imag(CF)−Data Imag(CF)−Model Imag(CF)−Model 0.8 0.8 Characteristic function Characteristic function 0.6 0.6 0.4 0.4 0.2 0.2 0 0 −0.2 −0.2 −2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000 2500 −2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000 2500 Theta Theta 32

  33. Illustration The calibrated parameters are : µ (bp/day) Res1 C G M Y 1 2.92 0.2261 344.12 310.26 0.2422 0.1061 Y 10 Res10 a b 0.1481 2.3275 0.2558 0.0547 33

  34. Illustration The autocorrelations are : ρ data ρ model -4.41% -3.73% 34

  35. Illustration For pricing derivatives, we directly model the stock dynamics in the risk-neutral world as follows : S t = S 0 e ( r − q + ω ) t + Z FB ( t ) where ω is defined by : e − ωt = ϕ Z FB ( t ) ( − i ) = E Q � e Z FB ( t ) � 35

Recommend


More recommend