return return statements
play

Return Return Statements A return statement completes the - PowerPoint PPT Presentation

Return Return Statements A return statement completes the evaluation of a call expression and provides its value f(x) for user-defined function f : switch to a new environment; execute f's body return statement within f : switch back to the


  1. Return

  2. Return Statements A return statement completes the evaluation of a call expression and provides its value f(x) for user-defined function f : switch to a new environment; execute f's body return statement within f : switch back to the previous environment; f(x) now has a value Only one return statement is ever executed while executing the body of a function def end (n, d): """Print the final digits of N in reverse order until D is found. >>> end(34567, 5) 7 6 5 """ while n > 0 : last, n = n % 10 , n // 10 print(last) if d == last: return None (Demo) 2

  3. Recursive Functions

  4. Recursive Functions Definition : A function is called recursive if the body of that function calls itself, either directly or indirectly Implication : Executing the body of a recursive function may require applying that function Drawing Hands, by M. C. Escher (lithograph, 1948) 4

  5. Digit Sums 2+0+1+8 = 11 • If a number a is divisible by 9, then sum_digits(a) is also divisible by 9 • Useful for typo detection! The Bank of 61A A checksum digit is a function of all the other 1234 5678 9098 7658 digits; It can be computed to detect typos OSKI THE BEAR • Credit cards actually use the Luhn algorithm, which we'll implement after sum_digits 5

  6. The Problem Within the Problem The sum of the digits of 6 is 6. Likewise for any one-digit (non-negative) number (i.e., < 10). The sum of the digits of 2019 is 201 9 Sum of these digits + This digit That is, we can break the problem of summing the digits of 2019 into a smaller instance of the same problem, plus some extra stuff. We call this recursion 6

  7. Sum Digits Without a While Statement def split(n): """Split positive n into all but its last digit and its last digit.""" return n // 10, n % 10 def sum_digits(n): """Return the sum of the digits of positive integer n.""" if n < 10: return n else: all_but_last, last = split(n) return sum_digits(all_but_last) + last 7

  8. The Anatomy of a Recursive Function • The def statement header is similar to other functions • Conditional statements check for base cases • Base cases are evaluated without recursive calls • Recursive cases are evaluated with recursive calls def sum_digits(n): """Return the sum of the digits of positive integer n.""" if n < 10: return n else: all_but_last, last = split(n) return sum_digits(all_but_last) + last (Demo1) 8

  9. Recursion in Environment Diagrams

  10. Recursion in Environment Diagrams (Demo2 pythontutor) • The same function fact is called multiple times • Different frames keep track of the different arguments in each call • What n evaluates to depends upon the current environment • Each call to fact solves a simpler problem than the last: smaller n 10 http://pythontutor.com/composingprograms.html#code=def%20fact%28n%29%3A%0A%20%20%20%20if%20n%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20n%20*%20fact%28n%20-%201%29%0A%20%20%20%20%20%20%20%20%0Afact%283%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

  11. Iteration vs Recursion Iteration is a special case of recursion Using while: Using recursion: def fact_iter (n): def fact (n): total, k = 1 , 1 if n == 0 : while k <= n: return 1 total, k = total*k, k+ 1 else : return total return n * fact(n- 1 ) Math: Names: n, total, k, fact_iter n, fact 11 (Demo3 trace!)

  12. Verifying Recursive Functions

  13. The Recursive Leap of Faith def fact ( n ): if n == 0 : return 1 else : return n * fact(n-1) Is fact implemented correctly? 1. Verify the base case 2. Treat fact as a functional abstraction! 3. Assume that fact ( n -1) is correct 4. Verify that fact ( n ) is correct 13 Photo by Kevin Lee, Preikestolen, Norway

  14. Mutual Recursion

  15. The Luhn Algorithm Used to verify credit card numbers From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm • First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5) • Second: Take the sum of all the digits 1 3 8 7 4 3 = 30 2 3 1+6=7 7 8 3 The Luhn sum of a valid credit card number is a multiple of 10 (Demo4) 15

  16. Recursion and Iteration

  17. Converting Recursion to Iteration Can be tricky: Iteration is a special case of recursion. Idea: Figure out what state must be maintained by the iterative function. def sum_digits(n): """Return the sum of the digits of positive integer n.""" if n < 10: return n else: all_but_last, last = split(n) return sum_digits(all_but_last) + last A partial sum What's left to sum (Demo5) 17

  18. Converting Iteration to Recursion More formulaic: Iteration is a special case of recursion. Idea: The state of an iteration can be passed as arguments. def sum_digits_iter(n): digit_sum = 0 while n > 0: n, last = split(n) Updates via assignment become... digit_sum = digit_sum + last return digit_sum def sum_digits_rec(n, digit_sum): if n == 0: ...arguments to a recursive call return digit_sum else: n, last = split(n) return sum_digits_rec(n, digit_sum + last) 18

  19. Order of Recursive Calls

  20. The Cascade Function (OPT Demo) • Each cascade frame is from a different call to cascade. • Until the Return value appears, that call has not completed. • Any statement can appear before or after the recursive call. 20 =def%20cascade%28n%29%3A%20%20%20%20%0A%20%20%20%20if%20n%20%3C%2010%3A%20%20%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20print%28n%29%20%20%20%20%0A%20%20%20%20else%3A%20%20%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20print%28n%29%20%20%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20cascade%28n//10%29%20%20%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20print%28n%29%20%20%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20%0Acascade%28123%29&cumulative=

  21. Two Definitions of Cascade (Demo, clean up cascade) def cascade(n): def cascade(n): if n < 10: print(n) print(n) if n >= 10: else: cascade(n//10) print(n) print(n) cascade(n//10) print(n) If two implementations are equally clear, then shorter is usually better • In this case, the longer implementation is more clear (at least to me) • When learning to write recursive functions, put the base cases first • Both are recursive functions, even though only the first has typical structure • 21

  22. Example: Inverse Cascade

  23. Inverse Cascade Write a function that prints an inverse cascade: def inverse_cascade(n): 1 1 grow(n) 12 12 print(n) 123 123 1234 1234 shrink(n) 123 123 def f_then_g(f, g, n): 12 12 if n: 1 1 f(n) g(n) grow = lambda n: f_then_g(grow, print, n//10) shrink = lambda n: f_then_g(print, shrink, n//10) 23

  24. Tree Recursion

  25. Tree Recursion Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call n: 0, 1, 2, 3, 4, 5, 6, 7, 8, ... , 35 fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, ... , 9,227,465 def fib (n): if n == 0 : return 0 elif n == 1 : return 1 else : return fib(n- 2 ) + fib(n- 1 ) 25 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  26. A Tree-Recursive Process The computational process of fib evolves into a tree structure fib(5) fib(3) fib(4) fib(1) fib(2) fib(2) fib(3) fib(0) fib(1) 1 fib(0) fib(1) fib(1) fib(2) 0 1 fib(0) fib(1) 0 1 1 0 1 (Demo3) 26

  27. Repetition in Tree-Recursive Computation This process is highly repetitive; fib is called on the same argument multiple times fib(5) fib(3) fib(4) fib(1) fib(2) fib(2) fib(3) fib(0) fib(1) 1 fib(0) fib(1) fib(1) fib(2) 0 1 fib(0) fib(1) 0 1 1 0 1 (We will speed up this computation dramatically in a few weeks by remembering results) 27

  28. Example: Counting Partitions

  29. Counting Partitions The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order. count_partitions(6, 4) 2 + 4 = 6 1 + 1 + 4 = 6 3 + 3 = 6 1 + 2 + 3 = 6 1 + 1 + 1 + 3 = 6 2 + 2 + 2 = 6 1 + 1 + 2 + 2 = 6 1 + 1 + 1 + 1 + 2 = 6 1 + 1 + 1 + 1 + 1 + 1 = 6 29

  30. Counting Partitions The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in non- decreasing order. count_partitions(6, 4) • Recursive decomposition: finding simpler instances of the problem. • Explore two possibilities: • Use at least one 4 • Don't use any 4 • Solve two simpler problems: • count_partitions(2, 4) • count_partitions(6, 3) • Tree recursion often involves exploring different choices. 30

Recommend


More recommend