the software package a nts infields a nts infields is a
play

The Software Package A NTS InFields A NTS InFields is a Software - PowerPoint PPT Presentation

National Research Center Institute of Biomathematics for Environment & Health & Biometry Mathematical Modelling in Ecology and the Biosciences Stochastic Simulation and Bayesian Inference for Gibbs Fields: The Software-Package A NTS


  1. National Research Center Institute of Biomathematics for Environment & Health & Biometry Mathematical Modelling in Ecology and the Biosciences Stochastic Simulation and Bayesian Inference for Gibbs Fields: The Software-Package A NTS InFields Felix Friedrich Leipzig, 6.12.2002 ◭ ◮

  2. The Software Package A NTS InFields A NTS InFields is a Software Package for Simulation and Statistical Inference on Gibbs Fields. It is intended for mainly two purposes: To support tea- ching by demonstrating well known sampling and estimation techniques and for assistance in research. A NTS InFields is available for download from http://www.antsinfields.de contact: friedrich@antsinfields.de ◭ ◮

  3. History 1995–1998: Development of Voyager Portable and extensible System for simulation and data analysis 1998: Diploma thesis Parameter estimation on Gibbs fields in the context of statistical Image Analysis Need for implementation of • samplers for various Gibbs Fields (Ising Model and extensions) • parameter estimators on simulated or external data. today: A NTS InFields Software for Simulation of and Statistical Inference on Gibbs Fields ◭ ◮

  4. Aims / Requirements Aims • support teaching • assistance for research Requirements • (really) easy to handle • interactive visualization turned out to be efficient tool for teaching • flexibility for research, testing new techniques etc. • extensibility for implementing new samplers etc. ◭ ◮

  5. Realization • Strongly object oriented concept allows implementation close to mathematical structure intuitive and self-explaining easy implementation of interaction and consistent visualization • modular design for extensibility, reusability • command language for flexibility on intermediate level A NTS InFields is written in Oberon System 3 (ETH Z¨ urich, N.Wirth, Gutknecht, H.Marais, E.Zeller et al.) Oberon is also an Operating System. It runs on bare PC Hardware or as Emulation on Windows, MacOS, Linux,. . . (Portability) A NTS InFields uses the Voyager extension (University of Heidelberg, G.Sawitzki, M.Diller, F.Friedrich et al.) ◭ ◮

  6. Scope A NTS InFields contains • Handling and visualization of 1D, 2D and 3D data • Gibbs and Metropolis Hastings Algorithms, Simulated Annealing, Exact Sampling (CFTP) • Bayesian image reconstruction methods • parameter estimators on Gibbs fields • . . . A NTS InFields is attached to 2nd Edition of G. Winklers Book ‘Image Analyis, Random Fields and Dynamic Monte Carlo Methods’, Sprin- ger Verlag In progress: Meta compiler (alpha) for easy implementing of new models Planned: Interface to R ( both command language and procedure calls) . Demonstration: Look and feel, Commands, Panels, Random Numbers ◭ ◮

  7. Bayesian Image Restoration ◭ ◮

  8. Random Fields Notation {• , •} E finite space of states S ⊂ Z d finite index set x = ( x s ) s ∈ S ∈ E S configuration X := E S space of configurations { } , . . . , , . . . , , . . . , ◭ ◮

  9. Gibbs Fields We consider Neighbour-Gibbs fields exp( − H ( x )) Π( x ) = � y ∈ X exp( − H ( y )) , where H is of the form � H ( x ) = f ( x s , x ∂ ( s ) ) s ∈ S with ∂ ( t ) some neighbourhood of t , t ∈ S . ∂ = ◭ ◮

  10. Ising Model Easiest nontrivial case: E = {− 1 , 1 } , nearest neighbours and isotropy. An Ising Model with parameters β, h ∈ R is a Gibbs-Field with energy � � H ( x ) = − β x s x t + h x s s ∼ t s h : global tendency to take value 1 β : tendency of neighbours to be alike. ◭ ◮

  11. Problems with sampling: exp( − H ( x )) P ( X = x ) = � y ∈ X exp( − H ( y )) untractable , but P ( X t = x t | X s = x s , s � = t ) = exp( x t ( h + β � s∂t x s )) cosh( h + β � easy to calculate s∂t x s ) Solution → MCMC techniques like • Gibbs Sampler • Metropolis Hastings Algorithm • Exact Sampling ◭ ◮

  12. Markov Chains An irreducible Markov Chain with a stationary distribution µ is ergodic and fulfills (a) t →∞ P t ( i, j ) − → µ ( j ) (b) n →∞ ¯ → E µ ( f ( X ))) in L 2 − f n if E µ ( f ( X )) < ∞ , where � f n = 1 ¯ f ( x i ) n i =1 ...n Demonstration: Reflected Markov Chain ◭ ◮

  13. Algorithm for the Gibbs Sampler: 1. 0 �→ n 2. Sample x (0) from initial distribution, say uniform distribution on X 3. Apply K t on x ( n ) for all t ∈ S i.e. sample from local characteristics Π 1 in each point 4. copy x ( n ) to x ( n +1) 5. n + 1 �→ n 6. Return to step 3 until close enough to Π . Algorithm is a realization of a Markov chain with stationary distribution Π ◭ ◮

  14. A sweep ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ◭ ◮

  15. Visiting schedule ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ◭ ◮

  16. Visiting schedule ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ◭ ◮

  17. Visiting schedule ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ◭ ◮

  18. Visiting schedule ⑦ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ◭ ◮

  19. Visiting schedule ⑦ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ◭ ◮

  20. Visiting schedule ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ⑦ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ◭ ◮

  21. Visiting schedule ⑦ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ⑦ ⑦ ⑦ ❥ ❥ ❥ ⑦ ⑦ ❥ ❥ ⑦ ❥ ⑦ ❥ ⑦ ❥ ❥ ⑦ ❥ ❥ ⑦ ❥ ❥ ❥ ⑦ ❥ ❥ ⑦ ❥ ⑦ ❥ ❥ ❥ ⑦ ❥ ⑦ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ⑦ ❥ ❥ ❥ ◭ ◮

  22. Visiting schedule: Whole sweep finished ❥ ⑦ ⑦ ❥ ❥ ⑦ ⑦ ❥ ⑦ ❥ ⑦ ⑦ ❥ ⑦ ⑦ ❥ ❥ ⑦ ⑦ ❥ ⑦ ❥ ⑦ ❥ ❥ ⑦ ❥ ⑦ ⑦ ⑦ ❥ ❥ ⑦ ❥ ⑦ ⑦ ❥ ❥ ⑦ ❥ ⑦ ❥ ⑦ ⑦ ❥ ⑦ ❥ ❥ ⑦ ❥ ⑦ ❥ ⑦ ❥ ⑦ ❥ ⑦ ⑦ ❥ ❥ ⑦ ⑦ ❥ ❥ ⑦ ❥ ⑦ ❥ ⑦ ❥ ⑦ ❥ ⑦ ⑦ ❥ ◭ ◮

  23. Demonstrations • Ising Model, Gibbs Sampler • Ising Model + Channel noise, MMSE � � � x s + 1 p H ( x, y ) = − β x s x t + h 2 ln( 1 − p ) x s y s s ∼ t s s • Cooling Schemes, Simulated Annealing, ICM • Grey-valued “Ising Model” (Potts and others) � � H ( x ) = β ϕ ( x s , x t ) + h x s s ∼ t s ◭ ◮

  24. • Sampling from arbitrary Posterior Distributions � � � H ( y, x ) = β ϕ ( x s , x t ) + h x s + ϑ ( x s , y s ) , x ∼ t s s • Φ -Model, Texture Synthesis � � � H ( x ) = ϕ ( x s , x t ) + h β i x s s ∼ i t s i ◭ ◮

  25. . ◭ ◮

  26. Estimating (Hyper-)Parameters Assume observations on Λ = Λ + ∂ Λ (Conditional) Maximum-Likelihood estimator (MLE) � θ n := arg min − log( P θ ( X t = x t , t ∈ Λ | X s = x s , s ∈ ∂ Λ)) θ = arg min θ (log Z Λ ( x ∂ Λ ) − H Λ ( x Λ | x ∂ Λ )) Problem: Z Λ not computable . Solution: Subsampling method (Younes(88), Winkler(01)) Alternative approach: Estimators regarding only the conditional distri- butions P θ ( X t = x t | X s , s ∈ ∂ ( t )) like: Coding, Maximum-Pseudolikelihood, Minimal least squares, Minimum Chi Square estimator etc. ◭ ◮

  27. Coding Estimator(CE) With Λ + = { t ∈ Λ | t 1 + . . . + t d even } the MLE on Λ + becomes: � θ n = arg min − log( P ( X t = x t , t ∈ Λ + | X s = x s , s ∈ ∂ Λ + )) θ � = arg min − log P θ ( X t = x t | X s , s ∈ ∂ ( t )) . θ t ∈ Λ + Maximum-Pseudolikelihood Estimator (MPLE) Coding Estimator with replacement: Λ + − → Λ . � � θ n = arg min − log P θ ( X t = x t | X s , s ∈ ∂ ( t )) θ t ∈ Λ . Demonstration: Estimating Parameters ◭ ◮

Recommend


More recommend