the projective line over the integers
play

The Projective Line Over The Integers Ela Celikbas and Christina - PowerPoint PPT Presentation

The Projective Line Over The Integers Ela Celikbas and Christina Eubanks-Turner Department of Mathematics University of NebraskaLincoln October 2011 AMS Sectional Meeting Lincoln,NE Ela Celikbas and Christina Eubanks-Turner The


  1. The Projective Line Over The Integers Ela Celikbas and Christina Eubanks-Turner Department of Mathematics University of Nebraska–Lincoln October 2011 AMS Sectional Meeting Lincoln,NE Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  2. Motivation For a commutative Noetherian ring R , Spec ( R ) = { prime ideals of R } , poset under ⊆ . Questions. Q1. I. Kaplansky, ’50: What is Spec ( R ) , for a Noetherian ring R ? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  3. Motivation For a commutative Noetherian ring R , Spec ( R ) = { prime ideals of R } , poset under ⊆ . Questions. Q1. I. Kaplansky, ’50: What is Spec ( R ) , for a Noetherian ring R ? Q2. What is Spec ( R ) for a two-dimensional Noetherian domain R related to a polynomial ring? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  4. Motivation For a commutative Noetherian ring R , Spec ( R ) = { prime ideals of R } , poset under ⊆ . Questions. Q1. I. Kaplansky, ’50: What is Spec ( R ) , for a Noetherian ring R ? Q2. What is Spec ( R ) for a two-dimensional Noetherian domain R related to a polynomial ring? Q3. What is Spec ( Z [ x ]) ? When is Spec ( R ) ∼ = Spec ( Z [ x ]) ? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  5. Motivation For a commutative Noetherian ring R , Spec ( R ) = { prime ideals of R } , poset under ⊆ . Questions. Q1. I. Kaplansky, ’50: What is Spec ( R ) , for a Noetherian ring R ? Q2. What is Spec ( R ) for a two-dimensional Noetherian domain R related to a polynomial ring? Q3. What is Spec ( Z [ x ]) ? When is Spec ( R ) ∼ = Spec ( Z [ x ]) ? R. Wiegand, ’86: Characterization of Spec ( Z [ x ]) , the affine line over Z . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  6. 5 Axioms for U := Spec ( Z [ x ]) Notation. ∀ u ∈ poset U , u ↑ := { t | t > u } . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  7. 5 Axioms for U := Spec ( Z [ x ]) Notation. ∀ u ∈ poset U , u ↑ := { t | t > u } . Theorem 1. [RW] U := Spec ( Z [ x ]) ⇐ ⇒ (1) (Obvious Axioms) • | U | = | Z | , • | u ↑ | = ∞ , • dim ( U ) = 2, • | ( u , v ) ↑ | < ∞ , ∀ u � = v , ht ( u ) = ht ( v ) = 1. Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  8. 5 Axioms for U := Spec ( Z [ x ]) Notation. ∀ u ∈ poset U , u ↑ := { t | t > u } . Theorem 1. [RW] U := Spec ( Z [ x ]) ⇐ ⇒ (1) (Obvious Axioms) • | U | = | Z | , • | u ↑ | = ∞ , • dim ( U ) = 2, • | ( u , v ) ↑ | < ∞ , ∀ u � = v , ht ( u ) = ht ( v ) = 1. (2) (Subtle Axiom) (RW) For S ⊆ { ht 1’s } , T ⊆ { ht 2’s } , 0 < | S | < ∞ , | T | < ∞ , ∃ w ∈ { ht 1’s } , ( w , s ) ↑ ⊆ T ⊂ w ↑ . � s ∈ S Definition. w is a radical element for ( S , T ) if (RW) holds. Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  9. The Projective Line Over the Integers Notation. Projective line over Z =Proj ( Z ) � 1 Proj ( Z ) := Spec ( Z [ x ]) ∪ Spec ( Z � ) , with x � 1 ) � Spec ( Z [ x , 1 Spec ( Z [ x ]) ∩ Spec ( Z � x ]) . x Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  10. The Projective Line Over the Integers Notation. Projective line over Z =Proj ( Z ) � 1 Proj ( Z ) := Spec ( Z [ x ]) ∪ Spec ( Z � ) , with x � 1 ) � Spec ( Z [ x , 1 Spec ( Z [ x ]) ∩ Spec ( Z � x ]) . x e.g. ( 4 x 3 + 3 x 2 − 1 ) � ( 4 + 3 · 1 x − 1 · 1 x 3 ) in Spec ( Z [ x , 1 x ]) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  11. The Projective Line Over the Integers Notation. Projective line over Z =Proj ( Z ) � 1 Proj ( Z ) := Spec ( Z [ x ]) ∪ Spec ( Z � ) , with x � 1 ) � Spec ( Z [ x , 1 Spec ( Z [ x ]) ∩ Spec ( Z � x ]) . x e.g. ( 4 x 3 + 3 x 2 − 1 ) � ( 4 + 3 · 1 x − 1 · 1 x 3 ) in Spec ( Z [ x , 1 x ]) . Characterize Proj ( Z ) ? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  12. The Projective Line Over the Integers Notation. Projective line over Z =Proj ( Z ) � 1 Proj ( Z ) := Spec ( Z [ x ]) ∪ Spec ( Z � ) , with x � 1 ) � Spec ( Z [ x , 1 Spec ( Z [ x ]) ∩ Spec ( Z � x ]) . x e.g. ( 4 x 3 + 3 x 2 − 1 ) � ( 4 + 3 · 1 x − 1 · 1 x 3 ) in Spec ( Z [ x , 1 x ]) . Characterize Proj ( Z ) ? Proj ( Z ) satisfies the obvious axioms. Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  13. The Projective Line Over the Integers Notation. Projective line over Z =Proj ( Z ) � 1 Proj ( Z ) := Spec ( Z [ x ]) ∪ Spec ( Z � ) , with x � 1 ) � Spec ( Z [ x , 1 Spec ( Z [ x ]) ∩ Spec ( Z � x ]) . x e.g. ( 4 x 3 + 3 x 2 − 1 ) � ( 4 + 3 · 1 x − 1 · 1 x 3 ) in Spec ( Z [ x , 1 x ]) . Characterize Proj ( Z ) ? Proj ( Z ) satisfies the obvious axioms. What about (RW)? ∃ a radical element for finite subsets ∅ � = S of height 1’s and T of height 2’s in Proj ( Z ) ? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  14. Proj ( Z ) − "Roughly" Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  15. Preliminaries, Previous Results Fact. Proj ( Z ) does not satisfy (RW). [A. Li, S. Wiegand ’97] Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  16. Preliminaries, Previous Results Fact. Proj ( Z ) does not satisfy (RW). [A. Li, S. Wiegand ’97] Example. For S := { ( 1 x ) , ( 2 ) , ( 5 ) } and T := { ( x , 2 ) , ( 1 x , 2 ) , ( 1 x , 3 ) } , ( S , T ) does not have a radical element in Proj ( Z ) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  17. Preliminaries, Previous Results Fact. Proj ( Z ) does not satisfy (RW). [A. Li, S. Wiegand ’97] Example. For S := { ( 1 x ) , ( 2 ) , ( 5 ) } and T := { ( x , 2 ) , ( 1 x , 2 ) , ( 1 x , 3 ) } , ( S , T ) does not have a radical element in Proj ( Z ) . Sketch. If w radical for ( S , T ) in Proj ( Z ) , then w ⊆ ( 1 x , 2 ) ∩ ( 1 ⇒ w � = ( p ) , p ∈ Z prime. Also w � = ( 1 x , 3 ) = x ) . Thus w = ( g ( x )) , for g irreducible, deg ( g ) > 0. Since ( 5 ) ∈ S , ( g , 5 ) ↑ � = ∅ . But ( g , 5 ) ↑ � T , a contradiction. ∴ ∄ radical element. Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  18. Preliminaries, Previous Results Fact. Proj ( Z ) does not satisfy (RW). [A. Li, S. Wiegand ’97] Example. For S := { ( 1 x ) , ( 2 ) , ( 5 ) } and T := { ( x , 2 ) , ( 1 x , 2 ) , ( 1 x , 3 ) } , ( S , T ) does not have a radical element in Proj ( Z ) . Sketch. If w radical for ( S , T ) in Proj ( Z ) , then w ⊆ ( 1 x , 2 ) ∩ ( 1 ⇒ w � = ( p ) , p ∈ Z prime. Also w � = ( 1 x , 3 ) = x ) . Thus w = ( g ( x )) , for g irreducible, deg ( g ) > 0. Since ( 5 ) ∈ S , ( g , 5 ) ↑ � = ∅ . But ( g , 5 ) ↑ � T , a contradiction. ∴ ∄ radical element. Question. When ∃ radical elements? Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  19. Coefficient Subset Definition. For U poset, dim ( U ) = 2, C ⊆ { ht 1’s } , C = coefficient subset of U if ∀ p ∈ C , | p ↑ | = ∞ ; ∀ p � = q ∈ C , ( p , q ) ↑ = ∅ ; p ∈ C p ↑ = { ht 2’s } ; � p ∈ C , u ∈ { ht 1’s } \ C ⇒ ( p , u ) ↑ � = ∅ , p ↑ = � ( v ∈{ ht 1’s }\ C ) ( p , v ) ↑ ; Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  20. Coefficient Subset Definition. For U poset, dim ( U ) = 2, C ⊆ { ht 1’s } , C = coefficient subset of U if ∀ p ∈ C , | p ↑ | = ∞ ; ∀ p � = q ∈ C , ( p , q ) ↑ = ∅ ; p ∈ C p ↑ = { ht 2’s } ; � p ∈ C , u ∈ { ht 1’s } \ C ⇒ ( p , u ) ↑ � = ∅ , p ↑ = � ( v ∈{ ht 1’s }\ C ) ( p , v ) ↑ ; Proposition 1. [Arnavut] C 0 = { p Z [ x ] | p ∈ Spec ( Z ) } = the unique coefficient subset of Proj ( Z ) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  21. Conjecture Proposition 2. [Arnavut] Let S ⊆ { ht 1’s } , T ⊆ { ht 2’s } , 0 < | S | < ∞ , | T | < ∞ . Suppose: m ∈ T ( m ↓ ∩ C 0 ) , and S ∩ C 0 ⊆ � x ) ↑ ⊆ T s ∈ S ( s , x ) ↑ ⊆ T . s ∈ S ( s , 1 � � Either or Then ( S , T ) has ∞ radical elements in Proj ( Z ) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  22. Conjecture Proposition 2. [Arnavut] Let S ⊆ { ht 1’s } , T ⊆ { ht 2’s } , 0 < | S | < ∞ , | T | < ∞ . Suppose: m ∈ T ( m ↓ ∩ C 0 ) , and S ∩ C 0 ⊆ � x ) ↑ ⊆ T s ∈ S ( s , x ) ↑ ⊆ T . s ∈ S ( s , 1 � � Either or Then ( S , T ) has ∞ radical elements in Proj ( Z ) . Conjecture. [Arnavut] Same hypothesis. Suppose: m ∈ T ( m ↓ ∩ C 0 ) , and S ∩ C 0 ⊆ � ( 1 ( x ) ∈ S and x ) ∈ S . Then ∃ ∞ radical elements for ( S , T ) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

  23. Conjecture when T = ∅ Proposition 3. [–, E-T] Let S ⊆ { ht 1’s } , 0 < | S | < ∞ and T = ∅ . Suppose ( 1 • S ∩ C 0 = ∅ ; • ( x ) ∈ S x ) ∈ S . & Then ∃ ∞ radicals for ( S , ∅ ) . Ela Celikbas and Christina Eubanks-Turner The Projective Line Over The Integers

Recommend


More recommend