the polarization function the qed beta function and the
play

The Polarization Function, the QED Beta Function and the Muon - PowerPoint PPT Presentation

The Polarization Function, the QED Beta Function and the Muon Anomalous Magnetic Moment Johann H. K uhn Mainz 27-28 September 2012 I. Four loop polarization function II. QED beta function at five loops III. Anomalous magnetic moment of


  1. The Polarization Function, the QED Beta Function and the Muon Anomalous Magnetic Moment Johann H. K¨ uhn Mainz 27-28 September 2012

  2. I. Four loop polarization function II. QED beta function at five loops III. Anomalous magnetic moment of the muon: selected five- and six-loop terms based on Baikov, Chetyrkin, JHK, J. Rittinger, arxiv: 1206.1284, JHEP 1207(2012)017 Baikov, Chetyrkin, JHK, C. Sturm, arxiv: 1207.2199 2

  3. I.The Polarization Function � ( − g αβ q 2 + q α q β ) Π( L, a s ) = i d 4 xe iq · x � 0 | T j α ( x ) j β (0) | 0 � available in 4 loops (including constant piece) Examples of two non-singlet and two singlet diagrams contributing to the vector correlator. using � � � � β ( a s ) ∂ D ( L, a s ) = 12 π 2 γ ( a s ) − Π( L, a s ) ∂a s with Π in O ( α 3 s ) and anomalous dimension γ in 5 loops ( O ( α 4 s )) ⇒ R ≡ σ (had /σ ( µ + µ − ) in O ( α 4 s ) 3

  4. Results: �� � �� � d R d R NS = SI = i a i i a i NS SI Π p , Π p , s s 16 π 2 16 π 2 i ≥ 0 i ≥ 3 20 NS p = 9 , 0 � 55 � NS p = C F 12 − 4 ζ 3 , 1 � � � 44215 � − 143 72 − 37 2592 − 227 18 ζ 3 − 5 C 2 NS p = 6 ζ 3 + 10 ζ 5 + C F C A 3 ζ 5 2 F � � − 3701 648 + 38 + C F T F n f 9 ζ 3 , � � � 196513 � − 31 192 + 13 8 ζ 3 + 245 23328 − 809 162 ζ 3 − 20 + T 2 n 2 C 3 NS p = 8 ζ 5 − 35 ζ 7 f C F 9 ζ 5 3 F � � − 7505 10368 + 1553 3 + 11 24 ζ 4 − 250 + T n f C 2 54 ζ 3 − 4 ζ 2 9 ζ 5 F � � − 5559937 + 41575 1296 ζ 3 + 2 3 − 11 24 ζ 4 + 515 3 ζ 2 + T n f C F C A 27 ζ 5 93312 � � − 382033 20736 − 46219 864 ζ 3 − 11 48 ζ 4 + 9305 144 ζ 5 + 35 + C 2 F C A 2 ζ 7 � 34499767 � − 147473 2592 ζ 3 + 55 3 + 11 48 ζ 4 − 28295 864 ζ 5 − 35 + C F C 2 6 ζ 2 12 ζ 7 , A 373248 � 431 d abc d abc � 1728 − 21 64 ζ 3 − 1 3 − 1 16 ζ 4 + 5 6 ζ 2 p SI = 16 ζ 5 . 3 d R Can be applied for QCD (corresponding to quark loops) or to pure QED (lepton loops) with properly chosen colour factors. 4

  5. II. QED Beta Function � The QED beta function receives contributions from non-singlet (starting from 1-loop) and from singlet (starting from 4-loop) terms. � RG-equation: perturbative QCD contribution to µ 2 d dµ 2 A = β EM ( A, a s ) = 16 π 2 A 2 γ EM ( a s ) with γ EM = ( � q 2 i ) γ NS + ( � q 2 i ) γ SI and A = α/ 4 π ; a s = α s / 4 π γ = anomalous dimension, evaluated in 5 loops (with the help of massless 4-loop propagator integrals) ⇒ result in MS scheme 5

  6. � conversion: MOM-scheme Π MOM ( Q 2 , µ 2 ) vanishes at Q 2 = µ 2 (with µ 2 � = 0!) A ( µ ) ˜ ⇒ A ( µ ) = 1 + (4 π ) 2 A ( µ ) Π( L = 0 , a s ( µ )) . with L ≡ ln µ 2 Q 2 and    γ EM ( a s ) − β QCD ( a s ) ∂ A, a s ) = 16 π 2 ˜ A 2 β EM MOM ( ˜ Π EM ( L = 0 , a s )  ∂a s No new calculation needed. 6

  7. � application: pure QED, MS scheme � � 4 A 2 � � 2 n f + 44 +4 n f A 3 − A 4 9 n 2 β QED ( A ) = n f f 3 � � − 46 n f + 760 f − 832 f − 1232 A 5 27 n 2 ζ 3 n 2 243 n 3 + f 9  � 4157 � � � − 7462 A 6 + n 2  n f + + 128 ζ 3 − 992 ζ 3 + 2720 ζ 5 f 6 9 � � � � 856 − 21758 + 16000 ζ 3 − 416 3 ζ 4 − 1280 243 + 128 n 3 + n 4 + ζ 5 27 ζ 3  . f f 81 27 3 � conversion to MOM-scheme: as before 7

  8. � conversion: on-shell scheme Π OS ( Q 2 , M 2 ) vanishes at Q 2 = 0 ( M 2 � = 0!) ⇒ Π MS ( Q 2 = 0 , m 2 , µ 2 ) is required: 4-loop tadpoles! conversion of coupling constant (4-loop) conversion of mass (3-loop) ⇒ Π OS ( Q 2 , M 2 ) Q 2 -dependent (logarithmic) part at 5 loop. ( µ 2 disappears, M 2 appears) 8

  9. term of order α 5 , Q 2 dependent part Results: � 4157 6144 + 1 Π (5) ( ℓ MQ ) = Nℓ MQ 8 ζ 3 � 55 � 96 + 5 96 π 2 + 179 256 ζ 3 − 115 12 ζ 5 + 35 4 ζ 7 + 13 128 ℓ MQ − 1 12 π 2 ln(2) + N � � − 13 12 − 4 3 ζ 3 + 10 + N si 3 ζ 5 N 2 � − 11 432 + 1 36 π 2 − 17089 3 + 125 18 ζ 5 + 35 2304 ζ 3 + ζ 2 + 288 ℓ MQ � − 7 8 ζ 3 ℓ MQ + 5 6 ζ 5 ℓ MQ + 1 72 ℓ 2 MQ � � − 149 108 + 13 6 ζ 3 + 2 3 − 5 3 ζ 5 − 11 72 ℓ MQ + 1 N 2 si 3 ζ 2 + 3 ζ 3 ℓ MQ N 3 � − 6131 2916 + 203 162 ζ 3 + 5 9 ζ 5 − 151 324 ℓ MQ + 19 54 ζ 3 ℓ MQ − 11 216 ℓ 2 + MQ �� + 1 1 27 ζ 3 ℓ 2 432 ℓ 3 MQ − . (1) MQ N = number of leptons; ℓ MQ = ln M 2 /Q 2 ⇒ β -function in OS scheme at 5 loops 9

  10. III. Anomalous magnetic moment of the muon Recall (numbers from Kinoshita et al. 1205.5370) 116592089(63) × 10 − 11 a µ ( exp ) = 63 × 10 − 11 = δ exp Theory: dominant errors (hadronic) (37 . 2) exp + (21 . 0) rad × 10 − 11 δ vacpol = 40 × 10 − 11 δ ll = QED: 2 loop, 3 loop: exact, analytic 4 loop, 5 loop (recently): numerical (Kinoshita). 10

  11. � 3 ≈ 3 · 10 − 7 � α a (6) 3 loop: = (1 . 181 . . . + 22 . 868 . . . ) µ π [log( m µ /m e )] n const � 4 ≈ 382 · 10 − 11 � α a (8) 4 loop: = ( − 1 . 9106(20) + 132 . 6852(60)) µ π [log( m µ /m e )] n const (theory error: 1 . 7 · 10 − 13 ) � 5 ≈ 5 · 10 − 11 � α a (10) 5 loop: = (9 . 168(571) + 742 . 18(87) + . . . ) µ π [log( m µ /m e )] n const factor 10 below experimental uncertainty. Nevertheless: should be checked: 11

  12. master formulae � x 2 � 1 � � � M 2 α d asymp a asymp µ = dx (1 − x ) , α − 1 , µ R M 2 π 1 − x 0 e 1 d asymp ( Q 2 /M 2 , α ) = 1 + Πasymp( Q 2 /M 2 , α ) . R with Π evaluated in the OS scheme e e e e e e e e e e e e e e I ( a ) I ( b ) I ( c ) I ( d ) I ( e ) e e e e e e e e e e I ( f ) I ( g ) I ( h ) I ( i ) I ( j ) The ten gauge invariant subsets contributing to the muon anomaly which originate from inserting the vacuum polarization up to four-loop order into the first order QED vertex. For each diagram class only one typical representative is shown. Wavy lines denote photons( γ ), solid lines denote electrons( e ) or muons ( µ ). The last five diagrams { I ( f ), I ( g ), I ( h ), I ( i ), I ( j ) } are non-factorizable insertions of the vacuum polarization function; the first five diagrams { I ( a ), I ( b ), I ( c ), I ( d ), I ( e ) } are factorizable ones. 12

  13. Result for coefficients: Subset analytical numerical Ref. num.-ana. I ( a ) 20.1832 + O ( M e /M µ ) 20.14293(23) (Kinoshita) ≈ -0.04 I ( b ) 27.7188 + O ( M e /M µ ) 27.69038(30) (Kinoshita) ≈ -0.03 I ( c ) 4.81759 + O ( M e /M µ ) 4.74212(14) (Kinoshita) ≈ -0.08 I ( d ) 7.44918 + O ( M e /M µ ) 7.45173(101) (Kinoshita) ≈ 0.003 I ( e ) -1.33141 + O ( M e /M µ ) -1.20841(70) (Kinoshita) 0.12 ≈ I ( f ) 2.89019 + O ( M e /M µ ) 2.88598(9) (Kinoshita) ≈ -0.004 I ( g ) + I ( h ) 1.50112 + O ( M e /M µ ) 1.56070(64) (Kinoshita) ≈ 0.06 I ( i ) 0.25237 + O ( M e /M µ ) 0.0871(59) (Kinoshita) ≈ -0.17 I ( j ) -1.21429 + O ( M e /M µ ) -1.24726(12) (Kinoshita) ≈ -0.03 The first column shows the different gauge invariant subsets of diagrams. The second column contains the corresponding results evaluated numerically, where we have used for the mass ratio M µ /M e = 206 . 7682843(52). This result is correct only up to power corrections in the small mass ratio M e /M µ . The third column contains the numerical result obtained by Kinoshita et al. . The last column shows the difference between the numerical and asymptotic analytical results. The subsets { I ( a ), I ( b ), I ( c ), I ( d ), I ( e ) } originate from Feynman diagrams with factorizable vacuum polarization insertions, whereas the subsets { I ( f ), I ( g ), I ( h ), I ( i ), I ( j ) } are non-factorizable. good overall agreement! sum: vacpol= � I = 62 . 26675 to be compared with 751 . 35 for the total 13

  14. lessons from 5-loop logarithmically enhanced terms and factorizable terms dominate: � I = 62 . 26675 = 58 . 8374 + 1 . 915 + 1 . 514 � �� � � �� � � �� � factorizable irreducible irreducible 4 loop vacpol 4 loop vacpol logs const prediction for 6 loops (vacpol-subset) + small irreducible � I = 246 . 381 + 10 . 8647 ≈ 257 5 loop vacpol � �� � � �� � factorizable irreducible const 5 loop vacpol logs still missing (and dominant): light by light! 14

Recommend


More recommend