the moduli spaces of symplectic vortices on an orbifold
play

The moduli spaces of symplectic vortices on an orbifold Riemann - PowerPoint PPT Presentation

The moduli spaces of symplectic vortices on an orbifold Riemann surface Hironori Sakai Higher Structures in Algebraic Analysis Feb 13, 2014 Mathematisches Institut, WWU M unster http://sakai.blueskyproject.net/ Plan of this talk 1) What


  1. The moduli spaces of symplectic vortices on an orbifold Riemann surface Hironori Sakai Higher Structures in Algebraic Analysis Feb 13, 2014 Mathematisches Institut, WWU M¨ unster http://sakai.blueskyproject.net/

  2. Plan of this talk 1) What are Symplectic Vortex Equations (SVE)? Hamiltonian G -space → SVE → moduli → invariants 2) Motivation of my research 3) The reason for differentiable stacks 4) Moduli spaces for special cases Next: Notation 1 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  3. Notation [ § 1 What are SVE?] ⋄ G compact and connected Lie group. ⋄ g = g ∨ thru an � , � on g . g := Lie( G ) ⋄ A Hamiltonian G -space is a triple ( G -manifold M , symp form ω , moment map µ ). ⋄ A moment map is µ ∈ C ∞ G ( M, g ) satisfying d � µ, ξ � = − ι ( ξ M ) ω ( ∀ ξ ∈ g ) Next: Examples of Hamiltonian G -spaces 2 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  4. Examples of Hamiltonian G -spaces [ § 1 What are SVE?] � � 1) Ham U d -space Mat( d×n, C ) , ω, µ 0 (Grassmannian) A · g := g − 1 A ⋄ Mat( d×n, C ) � U d ; ⋄ µ 0 : Mat( d×n, C ) → u d ; µ 0 ( A ) = − i 2( AA † − τ 1 l) ( τ ∈ R ) � � 2) Ham U 1 -space C , ω, µ a ( a ∈ Z > 0 ) (WP pt) z · t = t − a z ⋄ C � U 1 ; ⋄ µ a : C → i R ; µ a ( z ) = i 2( a | z | 2 − τ ) ( τ ∈ R ) Next: Symplectic Vortex Equations 3 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  5. Symplectic Vortex Equations [ § 1 What are SVE?]   ( M, ω, µ ) Hamiltonian G -space  Fixed Data (Σ , j, dvol Σ ) closed Riemann surface   P → Σ principal G -bundle ✓ ✏ � � A ∈ A ( P ) ⊂ Ω 1 ( P, g ) G ∂ A u = 0 SVE for u ∈ C ∞ ∗ F A + µ ◦ u = 0 G ( P, M ) ✒ ✑ ⋄ ∂ A u = 0 ⇐ ⇒ u : Σ → P × G M is pseudo-hol Next: “Hitchin–Kobayashi correspondence” 4 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  6. “Hitchin–Kobayashi correspondence” [ § 1 What are SVE?] � � ⋄ Hamiltonian U d -space Mat( d × n, C ) , ω, µ 0 ⋄ SVE: ∂ A u = 0 and ∗F A − i 2( uu † − τ 1 l) = 0 ( τ ∈ R ) ✓ [H–K corresp. (Bertram–Daskalopoulos–Wentworth)] ✏ � � { SV ( A, u ) } gauge ↔ { τ -stable n -pairs ( ∂ E , s ) } isom ✒ ✑ s ∈ H 0 (Σ , E ⊕ n ). ⋄ E = P × U d Mat( d × n, C ), ⇒ deg( E ′ ) rk( E ′ ) < τ Vol(Σ) def ( ∀ E ′ ⊂ E ) and something ⋄ τ -stable ⇐ 4 π Next: Moduli space and invariants 5 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  7. Moduli space and invariants [ § 1 What are SVE?] Assumptions: µ − 1 (0) � G is free and more. ✓ [Thm (Cieliebak–Gaio–Mundet–Salamon)] ✏ � M ( P ) = { ( A, u ) | SVE } (gauge) is an oriented closed mfd. ✒ ✑ � ⋄ SVI: H dim M ( P ) ev ∗ α ( M ) → R ; α �→ (Intuitive def’ n!) G M ( P ) ✓ [Thm (Gaio–Salamon)] ✏ Under several topological conditions, SVI for M = GWI of M with fixed marked points Here M := µ − 1 (0) /G . ✒ ✑ Next: Q. GW theory is enough, isn’t it? 6 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  8. Q. GW theory is enough, isn’t it? [ § 1 What are SVE?] A. No!! ⋄ Applications! – Periodic orbits, SW inv, GW inv, QH ∗ ( M ) ⋄ Exciting Topics! – Geometry and topology of moduli spaces – H–K correspondence – Hamiltonian invariants – Differentiable stacks (today)! Next: Motivation: SVI=GWI for orbifold 7 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  9. Motivation: SVI=GWI for orbifold [ § 2 Motivation] ⋄ Unnatural assumption: µ − 1 (0) � G is free. ⋄ M (= µ − 1 (0) /G ) is usually an orbifold. ⋄ Orbifold GWI ⋄ (SVI of M ) � = (GWI for orbifold M ) ⋄ ∵ SVE do not care about singularities. ✓ ✏ [Conjecture] “SVI=GWI” holds for orbifolds after modifying SVE. ✒ ✑ Next: Idea: a “variation” of the eqn of J -hol curve 8 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  10. � Idea: a “variation” of the eqn of J -hol curve [ § 2 Motivation] Don’t Look at solutions! ✓ [Idea for “SVI=GWI”] ✏ � � ∂ A u = 0 ∂ A u = 0 dvol Σ → + ∞ ∗F A + µ ◦ u = 0 µ ◦ u = 0 SVE Eqn of J -hol Σ → M ✒ ✑ ⋄ Orbi GW: pseudo-hol maps from orbifold Riemann surf ⋄ Everything is an orbifold → Terrible! ⋄ Strategies: 1) “holonomy data” on smooth Σ (majority) 2) differentiable stacks! (today) Next: Q. Why do we need diff stacks? 9 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  11. � � Q. Why do we need diff stacks? [ § 2 Motivation] A. SVE are PDEs on differentiable stacks! � � ∂ A u = 0 A ∈ A ( P ) ⋄ SVE for u ∈ C ∞ ∗F A + µ ◦ u = τ G ( M, P ) u ⋄ P M ( π, u ) ← → map of stacks φ : Σ → [ M/G ] π � (smooth Σ) Σ � [ M/G ] φ ⋄ Idea: An orbifold Riemann surf Σ as a stacks. Next: Q. What should we do for P ? 10 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  12. � Q. What should we do for P ? [ § 2 Motivation] A. Use the cat P G (Σ) . (orbifold Σ) ⋄ P G (Σ) = cat of prin G -bdl over Σ with smooth total space. ⋄ ( P → Σ) ∈ P G (Σ) = ⇒ A ( P ) � = ∅ ✓ [Theorem] ✏ Take P → Σ in P G (Σ). Then � � ∂ A u = 0 ∂ A u = 0 dvol Σ → + ∞ ∗ F A + µ ( u ) = 0 µ ( u ) = 0 SVE (nothing to change!) Eqn of J -hol orbicurve Σ → M ✒ ✑ Next: Moduli spaces (special cases) 11 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  13. Moduli spaces (special cases) [ § 4 Moduli space] ⋄ Recall: Ham U 1 -space ( C , ω std , µ a ) ( a ∈ Z > 0 ) z · t = t −a z ( z ∈ C , t ∈ U 1 ) , µ a ( z ) = i � a | z | 2 − τ � ( τ ∈ R ) 2 ✓ [Theorem] ✏ sing pts order � �� � � �� � ⋄ π 1 (Σ) = 1 for Σ = (Σ; z 1 , . . . , z k ; m 1 , . . . , m k ) ⋄ a ∈ lcm( m 1 , . . . , m k ) Z ( ⇐ ∃ of J -hol orbicurve) � = C P ad if d < τ Vol(Σ) � d := i � M ( P ) ∼ = ⇒ F A 4 π 2 π Σ ✒ ✑ Next: What will come next? 12 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  14. What will come next? [ § 4 Moduli space] 1) Moduli spaces M ( P ) ∼ � � = covering sp of Sym ad (Σ)? ⋄ π 1 (Σ) � = 1 ⋄ Linear Hamiltonian T r -space ( C n , ω std , µ ) [WANTED] Specialist of geometric analysis of G -mfd! 2) Construction of SVI 3) SVI=GWI for orbifold M Next: Summary 13 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

  15. Summary [ § 4 Moduli space] ⋄ Hamiltonian G -space → SVE → moduli → invariants ⋄ Exciting topics and appl: H–K corresp, GW theory, etc. ⋄ SVE as PDEs on differentiable stacks work! Thank you for your attention! Next: http://sakai.blueskyproject.net/ 14 / 14 Hironori Sakai <h.sakai@uni-muenster.de>

Recommend


More recommend