the lhc machine prospects
play

The LHC Machine: prospects Massimo Giovannozzi CERN Beams - PowerPoint PPT Presentation

The LHC Machine: prospects Massimo Giovannozzi CERN Beams Department Introduction and a bit of history Upgrade options LHC upgrade MD studies Injectors upgrade The far future Acknowledgements: R. Assmann, H.


  1. The LHC Machine: prospects Massimo Giovannozzi CERN – Beams Department  Introduction and a bit of history  Upgrade options  LHC upgrade  MD studies  Injectors’ upgrade  The far future Acknowledgements: R. Assmann, H. Bartosik, E. Benedetto, O. Brüning, R. Calaga, S. Fartoukh, R. Garoby, W. Herr, J. Jowett, R. de Maria , E. Métral, Y. Papaphilippou, L. Rossi, E. Todesco, R. Tomás, M. Vretenar, F. Zimmermann et al. Massimo Giovannozzi - CERN

  2. Introduction - I ATLAS: High luminosity experiment.  Search for the Higgs boson(s). A Large Ion Collider Experiment  (ALICE): Ions. New phase of CMS matter expected (Quark-Gluon Plasma). Compact Muon Solenoid (CMS): High  luminosity experiment. Search for the Higgs boson(s). In this insertion is also located TOTEM for the measurement of the total proton- ATLAS proton cross-section and study elastic LHC-B scattering and diffractive physics. ALICE LHCb: Beauty quark  physics for precise measurements of CP violation and rare decays. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  3. LHC layout: the other insertions Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  4. Introduction - II Towards dispersion Separation/ricombination dipole suppressor and arc Absorber (neutral particles) Separation/ricombination dipole Low-beta quadrupoles (23 m away from IP) High luminosity insertions Interaction point Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  5. Introduction - IV High luminosity insertions: collision optics. Beta at interaction point equals 0.55 m. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  6. Few facts from optics max in the triplets depends on: In a drift L* space * Strength of the triplets Hence reducing * implies: Larger aperture triplets Larger strength Chromatic effects scale n -> potential with max issue for collimation performance Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  7. Nominal performance and beyond  The nominal LHC parameters allow to reach 10 34 cm -2 s -1  Some margin in bunch intensity was assumed originally: 1.15× 10 11 to 1.7 × 10 11 . This is the so-called ultimate intensity.  The corresponding ultimate luminosity is ~ 2.18×10 34 cm -2 s -1 .  Anything beyond this value requires a deep review of the LHC machine (and injectors!) Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  8. Figure-of-merit for an upgrade - I  The luminosity formula is the key ingredient: 2 N M f b rev r L F * 4 n  But:  Many hidden constraints between parameters  Not all the parameters are determined by the LHC machine  The formula gives the peak luminosity, the average is different Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  9. Figure-of-merit for an upgrade - II  Constraints between parameters: crossing angle 2 N M f 1 b rev r * L F / d F x c s 2 * * 4 d z s n x y 1 * 2 x  Luminosity saturates for round beams.  Flat beams can optimise the situation. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  10. Luminosity evolution  The luminosity decays because of proton burn-off.  Luminosity decay is proportional to peak luminosity!  Luminosity leveling is an important LHCb luminosity constant! Why? ingredient in LHC upgrade Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  11. Upgrade ideas (until 2010)  Assumptions (or common belief)  Lifetime of triplets under nominal conditions is few years (radiation due to debris) -> they should be replaced  Nominal parameters are probably tight and nominal luminosity might be difficult to achieve (triplets aperture)  Hence, two-stage approach:  Phase 1: “Consolidate” the machine with new triplets aiming at reaching ~ 2-3×10 34 cm -2 s -1 .  Phase 2: “Real” luminosity upgrade aiming at 10 35 cm -2 s -1 . . This includes a major upgrade of the detectors. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  12. Phase 1 in short  Rough summary of Phase 1 approach  Replace “only” triplets with larger aperture magnets to enable reaching smaller *.  Intense studies performed:  Minimum * achievable: ~ 30 cm  Limits have been highlighted in other parts of the machine -> much more elements than the triplets should be changed!  Very complex optical gymnastics in order to fulfill the correction of chromatic aberrations -> not much operational flexibility left. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN S. Fartoukh at Chamonix 2010 Workshop

  13. How many upgrades? Each upgrade will require a non-negligible time to recover from the stop and gain in INTEGRATED luminosity. Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN Courtesy V. Shiltsev

  14. Upgrade ideas (after 2010) Data not  One single upgrade. Courtesy L. Rossi, approved by Mgt M. Lamont  The time horizon is Peak lumi Int. lumi 1000.00 based on the 1.2E+34 projection of actual 100.00 Integrated luminosity [fb -1 ] performance of the Peak Luminosity [cm -2 s -1 ] 1.0E+34 running LHC. 10.00 Shutdown 8.0E+33 Shutdown  For the injectors see 6.0E+33 1.00 later. 4.0E+33 0.10 2.0E+33 0.0E+00 0.01 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  15. Latest unofficial 10 year plan Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  16. Scope of High-Luminosity upgrade of LHC  Targets:  A peak luminosity of 5×10 34 cm -2 s -1 with leveling  An integrated luminosity of 250 fb -1 per year, enabling the goal of 3000 fb -1 in twelve years (nominal LHC is around 300 fb -1 in ten years). 34 35 1.E+35 1035 -no level Level at 5 10 Nominal 1.E+35 Luminosity (cm -2 s -1 ) 35 Luminosity (cm-2 s-1) 1035 - no levelling 8.E+34 8.E+34 34 Levelling at 5 10 6.E+34 6.E+34 4.E+34 4.E+34 Average no level 2.E+34 Average level 2.E+34 0.E+00 0.E+00 0 5 10 15 20 25 0 2 4 6 8 10 12 time (hours) time (hours) Les Houches - Ecole d’été de Physique Théorique Massimo Giovannozzi - CERN

  17. * = 14 m in IR1 and IR5 Injection optics: Nominal arc (180m) in s45/56/81/12 New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  18. * = 60 cm in IR1 and IR5: “1111” Pre-squeezed optics: Nominal arc (180m) in s45/56/81/12 New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  19. * = 30 cm in IR1 and IR5: “2222” Intermediate squeezed optics: arc increased by a factor of 2 in s45/56/81/12 New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  20. Squeezed optics (round): * = 15 cm in IR1 and IR5: “4444” arc increased by a factor of 4 in s45/56/81/12 New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  21. x/y = 7.5/30 cm alternated in IR1 and IR5: “8228” * Squeezed optics (flat): arc increased by a factor of 2 or 8 in s45/56/81/12 depending on the * aspect ratio in IP1 and IP5 New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  22. Injection optics: zoom from IP4 to IP5 (beam1) New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  23. Pre- squeezed optics “1111”: zoom from IP4 to IP5 (beam1)  The line IP4-IP5 can be made achromatic ( SD2 family close to 550 A, but still big margin on the SF1 circuit ) New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  24. Intermediate squeezed optics “2222”: zoom from IP4 to IP5 (beam1)  * is further squeezed at IP5 by a factor of 2 by rematching IR4 only.  The line IP4-IP5 is kept achromatic at ~ cst sextupole strength. New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

  25. Flat squeezed optics “8228”: zoom from IP4 to IP5 (beam1) y (Q11  IP ) 1.25 × between the 12 y arc × * ) V cst strong SD sextupoles x (Q14  IP ) 1.25 × between the x arc × 9 strong SF’s  one missing * ) H cst at Q10 to complete 5 -pairs Equipping Q10 (MQML) with an MS becomes highly desirable for high arc New Achromatic Telescopic Squeezing concept invented Les Houches - Ecole d’été de Physique Théorique S. Fartoukh by S. Fartoukh

Recommend


More recommend