the group of reversible turing machines
play

The group of reversible Turing machines Sebastin Barbieri, Jarkko - PowerPoint PPT Presentation

The group of reversible Turing machines Sebastin Barbieri, Jarkko Kari and Ville Salo LIP, ENS de Lyon CNRS INRIA UCBL Universit de Lyon University of Turku Center for Mathematical Modeling, University of Chile AUTOMATA


  1. The group of reversible Turing machines Sebastián Barbieri, Jarkko Kari and Ville Salo LIP, ENS de Lyon – CNRS – INRIA – UCBL – Université de Lyon University of Turku Center for Mathematical Modeling, University of Chile AUTOMATA June, 2016

  2. Motivation Recall that a Turing machine is defined by a rule : δ T : Σ × Q → Σ × Q × {− 1 , 0 , 1 }

  3. Motivation Recall that a Turing machine is defined by a rule : δ T : Σ × Q → Σ × Q × {− 1 , 0 , 1 } q δ T ( , q ) = ( , r , − 1)

  4. Motivation Recall that a Turing machine is defined by a rule : δ T : Σ × Q → Σ × Q × {− 1 , 0 , 1 } r δ T ( , q ) = ( , r , − 1)

  5. Motivation This defines a natural action T : Σ Z × Q → Σ Z × Q q T r

  6. Motivation This defines a natural action T : Σ Z × Q → Σ Z × Q Such that if ( x , q ) ∈ Σ Z × Q and δ T ( x 0 , q ) = ( a , r , d ) then : x ) , q ′ ) T ( x , q ) = ( σ − d (˜ where σ : Σ Z → Σ Z is the shift action given by σ d ( x ) z = x z − d , ˜ x 0 = a and ˜ x | Z \{ 0 } = x | Z \{ 0 } .

  7. Motivation The composition of two actions T ◦ T ′ is not necessarily an action generated by a Turing machine. if the action T is a bijection then the inverse it not necessarily an action generated by a Turing machine.

  8. Motivation The composition of two actions T ◦ T ′ is not necessarily an action generated by a Turing machine. if the action T is a bijection then the inverse it not necessarily an action generated by a Turing machine. As in cellular automata, the class of CA with radius bounded by some k ∈ N is not closed under composition or inverses.

  9. Definition Let’s get rid of these constrains. Given F , F ′ finite subsets of Z d , consider instead of δ T a function : f T : Σ F × Q → Σ F ′ × Q × Z d ,

  10. Definition Let’s get rid of these constrains. Given F , F ′ finite subsets of Z d , consider instead of δ T a function : f T : Σ F × Q → Σ F ′ × Q × Z d , Let F = F ′ = { 0 , 1 , 2 } 2 , then f T ( p , q ) = ( p ′ , q ′ ,� d ) means : p p ′ Turn state q into state q ′ Move head by � d .

  11. Moving head model f T defines naturally an action T � Σ Z d × Q × Z d T q 2 q 1 f ( , q 1 ) = ( , q 2 , (1 , 1)) F = { (0 , 0) , (1 , 0) , (1 , 1) }

  12. Moving head model f T defines naturally an action T � Σ Z d × Q × Z d T q 2 q 1 f ( , q 1 ) = ( , q 2 , (1 , 1)) F = { (0 , 0) , (1 , 0) , (1 , 1) } Let | Σ | = n and | Q | = k . ( TM ( Z d , n , k ) , ◦ ) is the monoid of all such T with the composition operation ; ( RTM ( Z d , n , k ) , ◦ ) is the group of all such T which are bijective .

  13. Moving head model : As cellular automata Let Q = { 1 , . . . , k } and Σ = { 0 , . . . , n − 1 } . Σ Z d = { x : Z d → Σ } X k = { x ∈ { 0 , 1 , . . . , k } Z d | 0 / ⇒ � u = � ∈ { x � u , x � v } = v } Let X n , k = Σ Z d × X k and Y = Σ Z d × { 0 Z d } . Then :

  14. Moving head model : As cellular automata Let Q = { 1 , . . . , k } and Σ = { 0 , . . . , n − 1 } . Σ Z d = { x : Z d → Σ } X k = { x ∈ { 0 , 1 , . . . , k } Z d | 0 / ⇒ � u = � ∈ { x � u , x � v } = v } Let X n , k = Σ Z d × X k and Y = Σ Z d × { 0 Z d } . Then : TM ( Z d , n , k ) = { φ ∈ End ( X n , k ) | φ | Y = id , φ − 1 ( Y ) = Y } RTM ( Z d , n , k ) = { φ ∈ Aut ( X n , k ) | φ | Y = id }

  15. Moving tape model f T defines naturally an action T � Σ Z d × Q T f q 1 q 2 f ( , q 1 ) = ( , q 2 , (1 , 1)) F = { (0 , 0) , (1 , 0) , (1 , 1) }

  16. Moving tape model f T defines naturally an action T � Σ Z d × Q T f q 1 q 2 f ( , q 1 ) = ( , q 2 , (1 , 1)) F = { (0 , 0) , (1 , 0) , (1 , 1) } Let | Σ | = n and | Q | = k . ( TM fix ( Z d , n , k ) , ◦ ) is the monoid of all such T with the composition operation ; ( RTM fix ( Z d , n , k ) , ◦ ) is the group of all such T which are bijective .

  17. Moving tape model : dynamical definition Let x , y ∈ Σ Z d . x and y are asymptotic , and write x ∼ y , if they differ in finitely many coordinates. We write x ∼ m y if x � v = y � v for all | � v | ≥ m .

  18. Moving tape model : dynamical definition Let x , y ∈ Σ Z d . x and y are asymptotic , and write x ∼ y , if they differ in finitely many coordinates. We write x ∼ m y if x � v = y � v for v | ≥ m . Let T : Σ Z d × Q → Σ Z d × Q be a function. all | � T is a moving tape Turing machine ⇐ ⇒ T is continuous, and for a continuous function s : Σ Z d × Q → Z d and a ∈ N we have T ( x , q ) 1 ∼ a σ s ( x , q ) ( x ) for all ( x , q ) ∈ Σ Z d × Q .

  19. Moving tape model : dynamical definition Let x , y ∈ Σ Z d . x and y are asymptotic , and write x ∼ y , if they differ in finitely many coordinates. We write x ∼ m y if x � v = y � v for v | ≥ m . Let T : Σ Z d × Q → Σ Z d × Q be a function. all | � T is a moving tape Turing machine ⇐ ⇒ T is continuous, and for a continuous function s : Σ Z d × Q → Z d and a ∈ N we have T ( x , q ) 1 ∼ a σ s ( x , q ) ( x ) for all ( x , q ) ∈ Σ Z d × Q . s : Σ Z d × Q → Z d is the shift indicator function

  20. Equivalence of the models = S k and Z d ֒ RTM fix ( Z d , 1 , k ) ∼ → RTM ( Z d , 1 , k ).

  21. Equivalence of the models = S k and Z d ֒ RTM fix ( Z d , 1 , k ) ∼ → RTM ( Z d , 1 , k ). Proposition If n ≥ 2 then : TM fix ( Z d , n , k ) ∼ = TM ( Z d , n , k ) RTM fix ( Z d , n , k ) ∼ = RTM ( Z d , n , k ) .

  22. Properties of RTM Proposition Let T ∈ TM fix ( Z d , n , k ). Then the following are equivalent : 1 T is injective. 2 T is surjective. 3 T ∈ RTM fix ( Z d , n , k ). 4 T preserves the uniform measure ( µ ( T − 1 ( A )) = µ ( A ) for all Borel sets A ). 5 µ ( T ( A )) = µ ( A ) for all Borel sets A .

  23. Properties of RTM Proposition If n ≥ 2 RTM ( Z d , n , k ) is not finitely generated.

  24. Properties of RTM Proposition If n ≥ 2 RTM ( Z d , n , k ) is not finitely generated. Proof : We find an epimorphism from RTM to a non-finitely generated group. Let T ∈ RTM fix ( Z d , n , k ), therefore, it has a shift indicator s : Σ Z d × Q → Z d . Define � α ( T ) := E µ ( s ) = s ( x , q ) d µ, Σ Z d × Q One can check that α ( T 1 ◦ T 2 ) = α ( T 1 ) + α ( T 2 ). Therefore α : RTM ( Z d , n , k ) → Q d is an homomorphism

  25. Properties of RTM Now consider the machine T SURF , m where for all a ∈ Σ and q ∈ Q : q 0 0 a 0 0 0 0 0 T SURF , m q a 0 0 0 0 0 0 0 f (0 m a , q ) = ( a 0 m , q , 1) . Otherwise f ( u , q ) = ( u , q , 0) .

  26. Properties of RTM Now consider the machine T SURF , m where for all a ∈ Σ and q ∈ Q : q 0 0 a 0 0 0 0 0 T SURF , m q a 0 0 0 0 0 0 0 f (0 m a , q ) = ( a 0 m , q , 1) . Otherwise f ( u , q ) = ( u , q , 0) . T SURF , m ∈ RTM ( Z , n , k ) and α ( T SURF , m ) = 1 / n m

  27. Properties of RTM Now consider the machine T SURF , m where for all a ∈ Σ and q ∈ Q : q 0 0 a 0 0 0 0 0 T SURF , m q a 0 0 0 0 0 0 0 f (0 m a , q ) = ( a 0 m , q , 1) . Otherwise f ( u , q ) = ( u , q , 0) . T SURF , m ∈ RTM ( Z , n , k ) and α ( T SURF , m ) = 1 / n m � (1 / n m ) m ∈ N � ⊂ α ( RTM ( Z , n , k )) which is thus a non-finitely generated subgroup of Q .

  28. Interesting subgroups of RTM ⊲ LP ( Z d , n , k ) − → Local permutations. q 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 T π r 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0

  29. Interesting subgroups of RTM ⊲ LP ( Z d , n , k ) − → Local permutations. ⊲ RFA ( Z d , n , k ) − → Reversible finite-state automata. q 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 T r 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0

  30. Interesting subgroups of RTM ⊲ LP ( Z d , n , k ) − → Local permutations. ⊲ RFA ( Z d , n , k ) − → Reversible finite-state automata. ⊲ OB ( Z d , n , k ) − → Oblivous machines � LP , Shift � .

  31. Interesting subgroups of RTM ⊲ LP ( Z d , n , k ) − → Local permutations. ⊲ RFA ( Z d , n , k ) − → Reversible finite-state automata. ⊲ OB ( Z d , n , k ) − → Oblivous machines � LP , Shift � . ⊲ EL( Z d , n , k ) − → Elementary machines � LP , RFA � .

  32. Small group theory roadmap Residually Finite LEF Surjunctive Abelian Sofic Amenable LEA Res. finite groups are those where every non-identity element can be mapped to a non-identity element by a homomorphism to a finite group Amenable groups admit left invariant finitely additive measures. LEF and LEA stand for locally embeddable into (finite/amenable) groups. Sofic groups are generalizations of LEF and LEA. Surjunctive groups satisfy that all injective CA are surjective.

  33. Small group theory roadmap Residually Finite LEF Surjunctive Abelian Sofic Amenable LEA Theorem ∀ n ≥ 2 , RTM ( Z d , n , k ) is LEF but neither amenable nor residually finite.

  34. Some properties : LP ( Z d , n , k ) → LP ( Z d , n , k ). For n ≥ 2, we have S ∞ ֒

  35. Some properties : LP ( Z d , n , k ) → LP ( Z d , n , k ). For n ≥ 2, we have S ∞ ֒ This means that RTM is not residually finite, and that it contains all finite groups.

  36. Some properties : LP ( Z d , n , k ) → LP ( Z d , n , k ). For n ≥ 2, we have S ∞ ֒ This means that RTM is not residually finite, and that it contains all finite groups. LP ( Z d , n , k ) is locally finite and amenable.

Recommend


More recommend