universality issues in reversible computing systems and
play

Universality Issues in Reversible Computing Systems and Cellular - PowerPoint PPT Presentation

Universality Issues in Reversible Computing Systems and Cellular Automata Kenichi Morita Hiroshima University Contents 1. Introduction 2. Reversible Turing machines (RTMs) 3. Reversible logic elements and circuits 4. Reversible cellular


  1. Realization of an RE by BBM [Morita, 2008] n ′ n ✻ ✒ ✒ ❄ ❘ I n 1 s 0 ✒ ✒ I ✠ ✛ ✛ ✛ w ′ e ❘ V I I ✲ ✲ ✲ e ′ w ✒ ✠ n 0 ✒ s 1 ❘ I I I I ❘ ✠ w 1 ✒ I ✒ w 0 ❄ ✠ ❘ ✒ I ✠ ✠ ❘ H ✒ ❘ ✠ e 1 ✻ ❘ ✠ ✠ ❘ e 0 ✻ ❘ ✠ ❄ s ′ s

  2. Parallel Case t = 0 t = 1 ❄ ❄ ✻ ✻ ✛ ✛ ✛ ✛ ✻ ✲ ✲ ✲ ✲ ❄ ❄ ✻ ✻

  3. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  4. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  5. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  6. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  7. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  8. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  9. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  10. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  11. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  12. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  13. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  14. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  15. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  16. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  17. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  18. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  19. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  20. Movements of Balls (State: V , Input: s ) n ′ n ✻ ✛ w e V ✲ w ′ e ′ ❄ s ′ s

  21. Orthogonal Case t = 0 t = 1 ❄ ❄ ✻ ✻ ✛ ✛ ✛ ✛ ✛ ✲ ✲ ✲ ✲ ✲ ❄ ❄ ✻ ✻

  22. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ H ✻ ❘ ✠ ✠ ❄ s ′ s

  23. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ H ✻ ❘ ✠ ✠ ❄ s ′ s

  24. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ H ✻ ❘ ✠ ✠ ❄ s ′ s

  25. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ H ✻ ❘ ✠ ✠ ❄ s ′ s

  26. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ H ✻ ❘ ✠ ✠ ❄ s ′ s

  27. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ H ✻ ❘ ✠ ✠ ❄ s ′ s

  28. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  29. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  30. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  31. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  32. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  33. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  34. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  35. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  36. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  37. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  38. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  39. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  40. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  41. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  42. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  43. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  44. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  45. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  46. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  47. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  48. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  49. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  50. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  51. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  52. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  53. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  54. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  55. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  56. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  57. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  58. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  59. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  60. Movements of Balls (State: H , Input: s ) n ′ n ✻ s 0 ✒ ✛ w e ❘ V ✲ ✲ w ′ e ′ ✒ s 1 I I I ✒ ✻ ❘ ✠ ✠ ❄ s ′ s

  61. 3. Reversible Cellular Automata

  62. Reversible Cellular Automata (RCAs) • It is a CA whose global function is one-to-one. • A kind of spatio-temporal model of a physically reversible space. • In spite of the strong restriction of reversibility, they have rich ability of computing. – Computation-universality – Self-reproduction – Synchronization – etc.

  63. Partitioned Cellular Automata • 1D Partitioned CA (PCA) L C R L C R L C R t � �� � f ❄ � �� � t + 1 i − 1 i + 1 i A local function f of a 1D PCA. • We can design RCAs easily using PCAs.

  64. Universal Reversible CAs — 1D Case — • On infinite configurations: 24-state RPCA [Morita, 2008] • On finite configurations: 98-state RPCA [Morita, 2007] cf. 1D Universal Irreversible CAs: • On infinite configurations: 2-state CA (ECA of rule 110) [Cook, 2004] • On finite configurations: 7-state CA (a modified model) [Lindgren et al., 1990]

Recommend


More recommend