the em algorithm for positive linear inverse problems
play

The EM Algorithm for Positive Linear Inverse Problems Bernard A. Mair - PowerPoint PPT Presentation

The EM Algorithm for Positive Linear Inverse Problems Bernard A. Mair Department of Mathematics University of Florida Outline Finite Dimensional Positive Linear Inverse Problems Finite Dimensional EM Algorithm Positive Linear Inverse


  1. The EM Algorithm for Positive Linear Inverse Problems Bernard A. Mair Department of Mathematics University of Florida

  2. Outline • Finite Dimensional Positive Linear Inverse Problems • Finite Dimensional EM Algorithm • Positive Linear Inverse Problems • The Infinite Dimensional EM Algorithm • Previous Convergence Results • New Developments

  3. Finite Dimensional Poisson Linear Inverse Problems = = ≥ , where ( ) , , 0 y P x P p x y × , i j I J = T Data: [ , ,..., ] , where ~ Poiss[ ] d d d d d y 1 2 I i i ∑ = = … Normalization: 1, for 1,2, , p j J , i j i Application: Emission Tomography Maximum Likelihood Estimation Gaussian Errors ⇒ Least Squares Minimization Poisson Errors ⇒ Kullback-Leibler Minimization

  4. PET Physics detector ring detector tube Emission-detection model Each annihilation results in 2 photons traveling in (nearly) opposite directions along a uniformly random line

  5. Maximum Likelihood Estimation = log ( | ) Prob d y P x ∑ = − + − ( [ ] log [ ] !) Px d Px d i i i i i ∑ = − − + + ( log( [ ] ) [ ] ) d d Px d Px c i i i i i i = − + + � ( | ) ( ) KL d P x c L x c � ˆ MLE: arg max ( ) x x L ≥ x 0 = arg min ( | ) KL d P x ≥ x 0

  6. Finite Dimensional EM Algorithm Analytic Derivation ∇ = ∇ ≤ � ˆ ˆ ˆ KT optimality: ( ) ; ( ) x L x 0 L x 0 d p ∑ + = > ( 1) ( ) i ij (0) n n EM Algorithm: , 0, flat x x x j j ( ) n [ ] Px i i ≥ For any data vector : d 0 ∑ ∑ + > = ≥ ( ) ( ) ( 1) ( ) n n n n (1) 0; ; ( ) ( ) x x d L x L x j i j i ( ) n (2) { } converges to a MLE (not unique) x L. Shepp and Y . Vardi (1982), IEEE Trans. Med. Imag..

  7. Image De ‐ blurring Noisy data ⇒ EM converges to noisy image ⇒ Regularization needed − β � ˆ arg max ( ) ( ) x L x R x Penalized MLE: ≥ R x 0 � Automatic choice of β , R � Fast optimization algorithms Early Stopping of EM � Automatic choice of stopping iteration • EM converges rapidly to exact image if data is exact

  8. Positive Linear Inverse Problems Vardi and Lee (1993), From image deblurring to optimal investments: maximum likelihood solutions for positive linear inverse problems, J. Royal Statist. Soc., B. ∫ = � ( ) ( , ) ( ) ( ), where g s p s x f x dx Pf s ∫ ≥ = , , 0; ( , ) 1, for all p f g p s x ds x ≈ � Given , estimate . g g f I nfinite Dimensional EM Algorithm � ( ) ( , ) g s p s x ∫ λ = λ λ > ( ) ( ) ; 0, const. x x ds + λ 1 0 n n ( ) P s n Kondor (1983), Nuclear Instruments and Methods. (MCW for f ,g on [0,1])

  9. ML Estimation ∫ = ∈Σ � ( ) ( , ) ( ) ( ), ,where g s p s x f x dx Pf s s Ω ∫ ≥ = ∈Ω 0, bdd., ( , ) 1, for all p p s x ds x Σ ≈ ∈ Σ � 1 Given ( ), estimate . g g L f − � � ( ) ( | ) L f KL g Pf ( ) ( ) ( ) ∫ = − ⎡ − + ⎤ � � � log( ( )) ( ) g s g s Pf s g s Pf s ds ⎣ ⎦ Σ { } ∈ Ω ≥ = � 1 Max. ( ) over M ( ) : 0, L f f L f f g 0 1 1

  10. ML Feasibility Set { } ∈ Ω ≥ = � 1 Max. ( ) over M ( ) : 0, L f f L f f g 0 1 1 Reasons: = ⇒ = = i Pf g Pf f g 1 1 1 i EM iterates satisfy the constraint. ( ) ( ) = − ∫ ∈ ⇒ � � M ( ) log( ( )) f L f g s g s Pf s ds 0 Σ • Is this norm constraint necessary? • Does not exist in finite dimensional case. • Does max. without constraint satisfy the constraint?

  11. EM Convergence � ( ) ( , ) g s p s x ∫ λ = λ λ > λ ∈ ∞ Ω ( ) ( ) ; 0, ( ) x x ds L + λ 1 0 0 n n ( ) P s Ω n [Multhei and Schorr (1987,89,93)]: ∞ λ > λ ∈ Ω λ = (1) 0, ( ), L g n n n 1 1 { } λ (2) ( ) is incr. and convergent. L n λ → λ λ * 1 * (3) If in , is a max. of over . L L M 0 n Resmerita, Engl, Iusem (2007) = = λ � (4) If and has bdd. sol'n, then { } has a g g Pf g n ≥ p subseq. which conv. weakly in , 1. L p

  12. Infinite Dimensional EM Algorithm: Issues • Existence of maximizer of L. • Definition of feasible set – different than finite dimensional case. • Convergence of EM algorithm for noisy data.

  13. New Results All issues resolved (partially) in semi- infinite dimensional model � Existence of maximizer of L. � Definition of feasible set – similar to finite dimensional case. � Convergence of (subsequence of) EM iterates for noisy data.

  14. Semi ‐ infinite Model ∫ = = � … ( ) ( ) , 1,2, , ,where g p x f x dx Pf i I i i i Ω I ∑ ≥ = ∈Ω 0, cont., ( ) 1, for all p p x x i i = 1 i ≈ ∈ � � I Given , estimate . g g f + Ω Extend to the set of finite Borel measures on . P S I ∑ λ − λ = − λ − + λ � � � � � ( ) ( | ) [ log( ) ] L KL g P g g P g P i i i i i = 1 i λ MLE: Maximize ( ) over . L S

  15. Existence of MLE ∃ ⊂ λ = λ (1) wkly-cpct ( ) , s.t.sup ( ) sup ( ) S t S L L λ ∈ λ ∈ ( ) S S t λ ˆ = λ (2) arg max ( ) exists and satisfies L λ ∈ S ∑ ∑ ˆ ˆ λ Ω = λ ≤ ∈Ω � � ( ) , ( ) 1, for all g g p x P x i i i i i i ∑ ˆ λ = λ = λ ∈ λ Ω = � (3) arg max ( ) where { : ( ) } L S S g λ ∈ 0 S i 0 i λ ˆ (4) is MLE iff ∑ ˆ λ ≤ ∈Ω � ( ) ( ) 1, for all and i g p x P x i i i i ∑ � ˆ ˆ λ = λ − ∈Ω ( ) ( ) 1, for a.e. ii g p x P x i i i i Mair et al (1996), Inverse Problems

  16. Semi ‐ infinite EM Algorithm ∑ � ∞ λ = λ λ λ > ( ) ( ) ( ) [ ] , 0, in x x g p x P L + 1 0 n n i i n i i Assumptions: i No is identically zero. p i ∞ → ∞ → ∞ i If , then [ ] for some . f Pf i n n i Results: ∗ ∞ λ λ ∈ i 1 { } has a subseq. conv. weakly in to some . L L n λ λ ∗ i { ( )} incr. to ( ) L L n λ ∗ λ i { ( | )} is a decreasing sequence. KL n ∗ ∗ λ → λ λ i 1 If { } in , is an MLE (w.r.t. ). L S n

  17. END

Recommend


More recommend