the edelweiss dark matter search
play

The EDELWEISS Dark Matter Search Astroparticle Physics in Germany, - PowerPoint PPT Presentation

The EDELWEISS Dark Matter Search Astroparticle Physics in Germany, Mainz 17-19.09.2018 Bernhard Siebenborn on behalf of the EDELWEISS collaboration www.kit.edu KIT The Research University in the Helmholtz Association WIMPs as Dark Matter Y.


  1. The EDELWEISS Dark Matter Search Astroparticle Physics in Germany, Mainz 17-19.09.2018 Bernhard Siebenborn on behalf of the EDELWEISS collaboration www.kit.edu KIT – The Research University in the Helmholtz Association

  2. WIMPs as Dark Matter Y. Sofue, PASJ, 70-2(2018) Rotation curves of galaxies  DM halo Assume DM particle candidate: WIMP gravitation additional “weak” interactions WIMP-nucleus scattering in detector Kinematics  keV-scale recoils Potential for WIMP discovery in a detector via combination of ionization heat heat scintillation Ionization scintillation χ Unknown parameters: WIMP cross section Ge WIMP mass credit to Illustris Collaboration 2 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  3. (low mass) WIMP searches CRESST n -cleus WIMP-nucleon SI cross section (cm 2 ) CDMSLite DAMIC EDELWEISS-III PANDA-X LUX n floor XENON-1t 0.1 1 10 WIMP Mass (GeV/c 2 ) 3 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  4. (low mass) WIMP searches CRESST n -cleus WIMP-nucleon SI cross section (cm 2 ) threshold CDMSLite DAMIC EDELWEISS-III threshold & exposure & discrimination PANDA-X LUX n floor XENON-1t 0.1 1 10 exposure & WIMP Mass (GeV/c 2 ) discrimination 4 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  5. EDELWEISS low mass WIMP searches EDELWEISS-III  Exploitation of results with 20 kg array  EPJC 76 (2016) 548 WIMP-nucleon SI cross section (cm 2 ) EDELWEISS-Surf Ionization channel R&D  Improving discrimination to explore the 8 B region with resolution (DMB8)  Exploring non-WIMP DM with smaller array Heat channel R&D DMB8  Improving the heat channel resolution to reach lower WIMP masses  Above-ground R&D (Surf) and deployment at LSM (LT) 0.1 1 10 WIMP Mass (GeV/c 2 ) 5 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  6. EDELWEISS collaboration CEA Irfu/Iramis (Saclay) France CSNSM (Orsay) Institut Néel (Grenoble) IPNL (Lyon) LPN (Marcoussis) Germany KIT (Karlsruhe) Russia JINR (Dubna) GB University of Oxford University of Sheffield EDELWEISS 2016 @ KIT 6 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  7. EDELWEISS-III setup Laboratory: LSM, ~4800m.w.e. rock overburden (deepest in Europe)  5 µ/m 2 /d Active muon veto + PE + Pb shield Clean room, de-radonised air  10-20 mBq/m 3 Cryostat hosting up to 40kg of detectors at 18mK Selection of radio pure material Performance of the EDELWEISS-III experiment for direct dark matter searches JINST 12 (2017) P08010 7 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  8. EDELWEISS-III detectors ~870g mono-crystal high purity Ge detectors surface event rejection ~10 -5 2 heat sensors per detector (GeNTDs) T op = 18 mK PLB 681 (2009) 305 – 309 Electrodes: Al rings covering all faces C top =+4V V top =-1.5V NTD Calibration: e - 133 Ba g AmBe neutron FID800 h + NTD  Clear event-by-event separation down C bott =-4V V bott =+1.5V to ~ keV energy (nuclear recoils) Bulk/Fiducial event: Surface event: Signal on C top &C bott Signal on C bott &V bott 8 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  9. 10 counts/keV/kg/day Axion-like particle searches (e - recoils) 1 Starting point: study of electron recoil spectrum of cosm. activ. Astropart. Phys. 91 (2017) 51 Threshold: 0.8 keV ee to 2 keV ee Analysis extended to higher energy for line search up to 500 keV ee 10 -1 Intensities of observed peaks consistent with known Th/U lines Baseline resolution: 193 eV ee 10 -2 energy (keV) residual/continuum Counts energy (keV) 9 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  10. ALP and dark photon results (e - recoils) Emission of Axion/ALPs from the sun keV-scale Bosonic DM Kinetic coupling k of dark photon CBRD signal C ompton- 10 -10 10 -10 B remsstrahlung- R ecombination- Solar neutrinos EDELWEISS-II D e-excitation-like signal EDELWEISS-III 10 -11 Kinetic mixing k 10 -12 XENON100 PandaX-II g ae LUX EDELWEISS-III 10 -12 Best Ge-based limits <6 keV 10 -14 Red giants (thanks to surface rejection) 10 -13 Start to explore <1 keV 10 -16 10 -5 10 -4 10 -3 10 -2 10 -1 1 1 10 100 m a (keV/c 2 ) m V (keV/c 2 ) expected sensitivity with improved ionization channel arXiv:1808.02340 10 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  11. prospects for GeV-range masses Complete study based on present measured backgrounds and resolutions vs possible improvements: PRD 97 (2018) 022003 WIMP-nucleon SI cross section (cm 2 ) 1. Use of Neganov-Luke boost to lower thresholds (increased detector voltage 8 V  100 V ) Projection for 4x800g 2. Improve heat resolution, objective of 800g detectors: 100 eV – 100V 150 days / current bgd s phonon = 500 eV  100 eV (50 eV resolution already achieved on 200 g detector) 0.1 1 10 WIMP Mass (GeV/c 2 ) 11 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  12. EDELWEISS-LT: NL-boost & improved heat 𝐹𝑗𝑝𝑜 E NL = ∙ 𝑊 𝑐𝑗𝑏𝑡 𝜁 Prompt phonons Charge propagation V bias NL amplified phonons ✔ 100V bias already achieved J. Billard et al., ✔ Observe nucl. recoils down to ~0.1 keV ee JLTP(2016)184:299 ✔ Full ion.+heat readout possible at any V same detector & same AmBe source ionization energy (keV ee ) NTD-B event 133 Ba 356 keV line 8 V 90 V FWHM heat (keV ee ) 1 g 0.1 n 0 4000 8000 12000 0 5 10 15 0 1 2 3 heat energy (keV ee ) Luke boost = 1 + V/3 Total phonon energy (keV) 12 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  13. resolution improvements on a 32g HPGe R&D with 32g HPGe combined with the objective of testing the above-ground sensitivity to sub-GeV WIMPs optimized NTD heat sensor on a 32g crystal, no electrodes (i.e. 1keV = 1keV NR ) kept at 17 mK in IPNL low-vibration dilution fridge [arXiv:1803.03463] one day blinded for WIMP search in [0-2] keV region 60eV analysis threshold s =18 eV baseline 13 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  14. unblinding the data No surprise: blinded day = carbon copy of preceding + following days analysis region 8000 dru 0.6-2.0 keV 4000 dru > 7 keV Find maximal WIMP rate compatible with total number of counts observed in the pre-defined windows  90% CL on WIMP signals as function of WIMP mass 14 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  15. EDELWEISS surface limit WIMP-nucleon SI cross section (cm 2 ) CRESST n -cleus (above ground) Best above-ground limit down to 600 MeV/c 2 : SIMP First sub-GeV limit with Ge, down to 500 MeV/c 2 EDELWEISS-Surf (above ground) Achieved resolution on a smaller detector exceeds by x5 the original LT goal with 800 g detectors EDELWEISS-III Small detectors with lower thresholds to be combined with expertise acquired on HV: threshold reduction by factor (1+V bias /3) in keV ee 0.1 1 10 WIMP Mass (GeV/c 2 ) 15 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

  16. Conclusions & outlook EDELWEISS-III : large detectors with excellent rejection Exploitation of FID to get best ALP limits, enter the sub-keV range EDELWEISS-MELODI: develop large detectors with EDELWEISS design Exploring non-WIMP DM with prototype: ALPs in the 0.1-1 keV range Building block for larger search experiment (DMB8), addressing specifically region where DM signal has to be spectrally separated from solar 8 B neutrinos Prospects in the sub-GeV-WIMP range: beyond EDELWEISS-LT Going beyond original [PRD] goal: 100 eV  18 eV (~500 eV EDW-III) Best surface limit for WIMPs above 0.6 GeV/c 2 Combining excellent energy resolution with NL-boost  2019/2020: intensive R&D in surface labs KIT + U Heidelberg: NL-boosted Ge detectors with MMC phonon sensors  DELight 16 Bernhard Siebenborn - EDELWEISS dark matter search Institut für Kernphysik

Recommend


More recommend