The D ark E nergy S urvey: Overview and New Results Brian Nord (@briandnord, nord@fnal.gov) for the DES Collaboration Fermilab User’s Meeting June 15, 2016 / 34
Sneak Preview • The Dark Energy Survey (DES) • Instrument: Dark Energy Camera • Footprint and Survey Progress • Recent results from early DES data • Strong lens discoveries • Mapping dark matter with weak lensing • Supernova samples / 34 2
Sneak Preview • The Dark Energy Survey (DES) • Instrument: Dark Energy Camera • Footprint and Survey Progress • Recent results from early DES data • Strong lens discoveries • Mapping dark matter with weak lensing • Supernova samples / 34 2
A Lonely Future 3
A Lonely Future 3
50 billion years A Lonely in the future Future 3
A Tug of War: Complementary Probes CMB Galaxy Distribution Geometry + Expansion + Structure Growth Supernovae / 34 4
A Tug of War: Complementary Probes Evolving DE equation of state: CMB w ( a ) = w 0 + (1 - a ) w a 1 . 0 0 . 5 Galaxy Distribution 0 . 0 Geometry w a − 0 . 5 + Expansion − 1 . 0 PLANCK+WP+JLA + PLANCK+WP+C11 − 1 . 5 PLANCK+WP+BAO+JLA Structure PLANCK+WP+BAO − 2 . 0 Growth − 2 . 0 − 1 . 8 − 1 . 6 − 1 . 4 − 1 . 2 − 1 . 0 − 0 . 8 − 0 . 6 − 0 . 4 Supernovae w 0 State of the art constraints: w 0 = -0.957 ± 0.124 (~13%) w a = -0.336 ± 0.552 (~164%) Betoule++2014 / 34 5
D ark E nergy S urvey Hello from the dark siiiide Imaging billions of years of 6 / 34
Expansion and Structure Growth Multiple Probes, One Experiment Evolving DE equation of state: w ( a ) = w 0 + (1 - a ) w a • Weak Lensing: (structure) DES expected measurements • 200 million galaxy shapes • Supernovae: (expansion) ) ! • ~3000 well-sampled SNe Ia to z ~1 w a • Galaxy Clusters: (structure) LSS BAO SNe • ~10,000s clusters to z>1 Clusters WL • Large-scale galaxy distribution: (expansion) Combined • 300 million galaxies to z > 1 w 0 Predicted DES Constraints: w 0 to ~5% w a to ~30% / 34 7
Expansion and Structure Growth Multiple Probes, One Experiment Evolving DE equation of state: w ( a ) = w 0 + (1 - a ) w a • Weak Lensing: (structure) DES expected measurements • 200 million galaxy shapes • Supernovae: (expansion) ) ! • ~3000 well-sampled SNe Ia to z ~1 w a • Galaxy Clusters: (structure) LSS BAO SNe • ~10,000s clusters to z>1 Clusters WL • Large-scale galaxy distribution: (expansion) Combined • 300 million galaxies to z > 1 w 0 • Strong Lensing: (structure and expansion) Predicted DES Constraints: w 0 to ~5% • ~2,000 galaxy-/cluster-scale lenses w a to ~30% / 34 7
DECam installed in 2012 courtesy Reidar Hahn / 34 8
Dark Energy Camera (DECam) Shape Position Flux / 34 9
Dark Energy Camera • Imager • 74 Chips, 570 Megapixels • 3-sq.-deg. FoV, 0.27’'/pixel • Red-sensitive: QE > 50% @ 1000nm • Filters • grizY bands: similar to SDSS • largest broadband filters for an astronomical instrument DECam CCD 620mm Conventional CCD / 34 10
2003 NOAO Announcement of Opportunity & Project Start 2004 R&D DES Timeline 2005 2006 2007 2008 Construction & Assembly 2009 Installation 2010 First Light 2011 Sept 12, 2012 2012 Commissioning Science Verification 2013 Season 1 2014 Season 2 2015 Season 3 2016 Season 4 2017 Season 5 / 34 2018
2003 NOAO Announcement of Opportunity & Project Start 2004 R&D DES Timeline 2005 2006 Three major components 2007 • DECam: led by Fermilab (DOE) 2008 Construction • Data Management & Assembly 2009 led by NCSA (NSF) Installation 2010 • Telescope Facilities Improvement First Light led by CTIO (NSF/NOAO) 2011 Sept 12, 2012 2012 Commissioning Data Releases to the Public Science Verification 2013 • Raw data Season 1 Released after 1-yr proprietary period 2014 Y1 and Y2 images available Season 2 2015 • Value-added, reduced data Season 3 SV object catalogs and more 2016 Season 4 2017 Season 5 / 34 2018
~500 Scientists from ~30 Institutions It takes a (big) village 7 Countries Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Argonne National Laboratory National Optical Astronomy Observatory Chicago Ohio State Texas A&M Michigan Pennsylvania Santa Cruz-SLAC-Stanford DES Consortium Illinois at Urbana-Champaign National Center for Supercomputing Applications Ludwig-Maximilians Universität Excellence Cluster Universe College London Cambridge Edinburgh Portsmouth Sussex Nottingham Institut d'Estudis Espacials de Catalunya Consejo Superior de Investigaciones Científicas Institut de Fisica d'Altes Energies CIEMAT DES-Brazil Consortium ETH-Zurich OzDES: Australian Universities and Observatories / 34 12
Observing Progress Year 1 Year 2 Year 3 Operations Hrs. (%) Hrs. (%) Hrs. (%) Total Observing 888.25 (100%) 928.75 (100%) 969.75 (100%) Time Available 751.50 (84.6) 782.50 (84.2) 636.50 (65.6) Observing Time 90.25 (10.2) 140.00 (15.1) 293.75 (30.3) Bad Weather Engineering 0.00 (0) 0.00 (0) 1.75 (0.1) Observations Telescope or Infrastructure 18.00 (2.0) 2.88 (0.3) 28.00 (2.9) Failure Camera Systems 25.75 (2.9) 3.12 (0.3) 9.75 (1.0) Failure Other 2.75 (0.3) 0.25 (0) 0.00 (0) / 34 13
Observing Progress Year 1 Year 2 Year 3 Operations Hrs. (%) Hrs. (%) Hrs. (%) Total Observing 888.25 (100%) 928.75 (100%) 969.75 (100%) Time Available 751.50 (84.6) 782.50 (84.2) 636.50 (65.6) Observing Time 90.25 (10.2) 140.00 (15.1) 293.75 (30.3) Bad Weather Engineering 0.00 (0) 0.00 (0) 1.75 (0.1) Observations Telescope or Infrastructure 18.00 (2.0) 2.88 (0.3) 28.00 (2.9) Failure Camera Systems 25.75 (2.9) 3.12 (0.3) 9.75 (1.0) Failure Other 2.75 (0.3) 0.25 (0) 0.00 (0) / 34 13
• 250 sq. deg.: Science Verification (SV) Survey Footprint • 5000 sq. deg.: Total area / 34 14
• 250 sq. deg.: Science Verification (SV) Survey Footprint • 5000 sq. deg.: Total area • Observing/Analysis Milestones: • SV area observed 2012-2013. • Year 2 covers nearly full DES area • Year 3 observing completed in Feb, 2016. • Analysis of full area still in progress. / 34 14
• Overlap with past and future surveys Survey Footprint SPT VHS / 34 15
New Results Strong Lensing Weak Lensing Supernovae 16 / 34
New Results Strong Lensing Weak Lensing Supernovae RXJ1131-123 17 / 34
Basics of Gravitational Lensing Thin lens approximation 18 / 34
Wilson Hall Lensed 19 / 34
Wilson Hall Lensed via GravLensHD by Eli Rykoff 19 / 34
Lenses for Cosmology Hubble constant, H 0 : proportional to the time delay between di ff erent light paths (Refsdal, 1964, Tewes++2012). Dark energy density, Ω Λ : constrained by S1 Lens S2 ratio of distances in rare multi-source systems (Collett++2015, Linder, 2016). Dark matter halo profiles reveal the growth of structure and constrain cosmological models (Jullo++2015) . 20 / 34
Strong Lenses in DES • 1979: First lensed Quasar • Before DES, ~1000 lenses have been discovered across all wavebands. • Predictions for DES • 2000 lenses (galaxy- to cluster-scale) • 120 lensed quasars • 5 lensed supernovae (Oguri & Marshall, 2010) • 1986: First lensed galaxy • Discoveries in DES • 55 galaxy-/cluster- scale in SV (Nord++2015) • 200 in Y1 (Nord++2016, Diehl++2016, in prep) • 5 lensed QSOs (Agnello++2015, Lin++2016, in prep.) • New Search Techniques • Includes Deep Learning (e.g., convolutional neural nets) • Citizen Science (e.g., SpaceWarps) 21 / 34
Strong Lenses in DES • DES Lensed Quasar • Before DES, ~1000 lenses have been discovered across all wavebands. • Predictions for DES • 2000 lenses (galaxy- to cluster-scale) • 120 lensed quasars • 5 lensed supernovae (Oguri & Marshall, 2010) • Discoveries in DES • DES Lensed Galaxy • 55 galaxy-/cluster- scale in SV (Nord++2015) • 200 in Y1 (Nord++2016, Diehl++2016, in prep) • 5 lensed QSOs (Agnello++2015, Lin++2016, in prep.) • New Search Techniques • Includes Deep Learning (e.g., convolutional neural nets) • Citizen Science (e.g., SpaceWarps) 21 / 34
New Results Strong Lensing Weak Lensing Supernovae 22 / 34
Structure Formation: Cosmic Lensing Foreground background lensing masses sources Observer Spatially Coherent Shear Pattern • Radial distances depend on geometry of Universe • Foreground mass distribution depends on growth of structure • only ~1% distortion of galaxy shapes / 34 23
Structure Formation: Cosmic Lensing Foreground background lensing masses sources Observer Spatially Coherent Shear Pattern • Radial distances depend on geometry of Universe • Foreground mass distribution depends on growth of structure • only ~1% distortion of galaxy shapes / 34 23
Recommend
More recommend