Multidimensional B-K theorems Competition complexity: Fix an environment with ๐ i.i.d. bidders. What is ๐ such that the revenue of VCG with ๐ + ๐ bidders is โฅ OPT with ๐ bidders. Thm. [EFFTW] Let ๐ซ be the competition complexity of ๐ additive bidders over ๐ items. The competition complexity of ๐ additive bidders with identical downward closed constraints over ๐ items is โค ๐ซ + ๐ โ ๐ . Competition Complexity of Auctions 31 Eden et al. EC'17 Inbal Talgam-Cohen
Multidimensional B-K theorems Competition complexity: Fix an environment with ๐ i.i.d. bidders. What is ๐ such that the revenue of VCG with ๐ + ๐ bidders is โฅ OPT with ๐ bidders. Thm. [EFFTW] Let ๐ซ be the competition complexity of ๐ additive bidders over ๐ items. The competition complexity of ๐ additive bidders with randomly drawn downward closed constraints over ๐ items is โค ๐ซ + ๐(๐ โ ๐) . Competition Complexity of Auctions 32 Eden et al. EC'17 Inbal Talgam-Cohen
Additive with constraints โข Constraints = set system over the items โ Specifies which item sets are feasible โข Bidder โ s value for an item set = her value for best feasible subset โข If all sets are feasible, bidder is additive Competition Complexity of Auctions 33 Eden et al. EC'17 Inbal Talgam-Cohen
Example of constraints โข No constraints Total value = $21 $6 $5 $10 Competition Complexity of Auctions 34 Eden et al. EC'17 Inbal Talgam-Cohen
Example of constraints โข Example of โ matroid โ constraints: Only sets of size ๐ = 1 are feasible Total value = $21 $10 Substitutes $6 $5 $10 Competition Complexity of Auctions 35 Eden et al. EC'17 Inbal Talgam-Cohen
Example of constraints โข Example of โ downward closed โ constraints: Sets of size 1 and { } are feasible Total value = $10 $16 Substitutes $6 $5 Complements $10 Competition Complexity of Auctions 36 Eden et al. EC'17 Inbal Talgam-Cohen
Complements in what sense? โข No complements = gross substitutes: โ ิฆ ๐ โค ิฆ ๐ item prices โ ๐ in demand( ิฆ ๐) if maximizes utility ๐ค ๐ ๐ โ ๐(๐) โ โ๐ in demand( ิฆ ๐) , there is ๐ in demand(ิฆ ๐) with every item in ๐ whose price didn โ t increase ๐ป $ $ $ $ ๐ผ Competition Complexity of Auctions 37 Eden et al. EC'17 Inbal Talgam-Cohen
Complements in what sense? โข No complements = gross substitutes: โ ิฆ ๐ โค ิฆ ๐ item prices โ ๐ in demand( ิฆ ๐) if maximizes utility ๐ค ๐ ๐ โ ๐(๐) โ โ๐ in demand( ิฆ ๐) , there is ๐ in demand(ิฆ ๐) with every item in ๐ whose price didn โ t increase $ ๐ป 10 ๐ ิฆ = (5, ๐, ๐) 5 6 ๐ผ Competition Complexity of Auctions 38 Eden et al. EC'17 Inbal Talgam-Cohen
Competition complexity โ summary Upper bound Valuation ๐ + 2 ๐ โ 1 Additive Additive s.t. identical downward ๐ + 3 ๐ โ 1 closed constraints Additive s.t. random downward closed ๐ + 4 ๐ โ 1 constraints Additive s.t. identical matroid ๐ + 2 ๐ โ 1 + ๐ constraints ๐ Lower bounds of ฮฉ ๐ โ log ๐ + 1 for additive bidders and ฮฉ ๐ for unit demand bidders are due to ongoing work by [Feldman-Friedler-Rubinstein] and to [Bulow-Klemperer โ 96]
Related work Multidimensional B-K theorems [Roughgarden T. Yan โ 12] : for unit demand bidders, revenue of VCG with ๐ extra bidders โฅ revenue of the optimal deterministic DSIC mechanism. [Feldman Friedler Rubinstein โ ongoing] : tradeoffs between enhanced competition and revenue. Prior-independent multidimensional mechanisms [Devanur Hartline Karlin Nguyen โ 11] : unit demand bidders. [Roughgarden T. Yan โ 12] : unit demand bidders. [Goldner Karlin โ 16] : additive bidders. Sample complexity [Morgenstern Roughgarden โ 16] : how many samples needed to approximate the optimal mechanism?
MULTIDIMENSIONAL B-K THEOREM PROOF SKETCH Competition Complexity of Auctions 41 Eden et al. EC'17 Inbal Talgam-Cohen
Bulow-Klemperer theorem Thm. Revenue of the 2 nd price auction with n+1 bidders โฅ Revenue of the optimal auction with n bidders. Competition Complexity of Auctions 42 Eden et al. EC'17 Inbal Talgam-Cohen
Bulow-Klemperer theorem Thm. Revenue of the 2 nd price auction with n+1 bidders โฅ Revenue of the optimal auction with n bidders. Proof. (in 3 steps of [Kirkegaard โ 06]) I. Upper-bound the optimal revenue. Competition Complexity of Auctions 43 Eden et al. EC'17 Inbal Talgam-Cohen
Bulow-Klemperer theorem Thm. Revenue of the 2 nd price auction with n+1 bidders โฅ Revenue of the optimal auction with n bidders. Proof. (in 3 steps of [Kirkegaard โ 06]) I. Upper-bound the optimal revenue. II. Find an auction ๐ต with more bidders and revenue โฅ the upper bound. Competition Complexity of Auctions 44 Eden et al. EC'17 Inbal Talgam-Cohen
Bulow-Klemperer theorem Thm. Revenue of the 2 nd price auction with n+1 bidders โฅ Revenue of the optimal auction with n bidders. Proof. (in 3 steps of [Kirkegaard โ 06]) I. Upper-bound the optimal revenue. II. Find an auction ๐ต with more bidders and revenue โฅ the upper bound. III. Show that the 2 nd price auction โ beats โ ๐ต . Competition Complexity of Auctions 45 Eden et al. EC'17 Inbal Talgam-Cohen
Proof: Myerson โ s optimal mechanism Step I. Upper-bound Price โฅ ๐ the optimal revenue. ๐ค 1 โผ ๐บ โฅ ๐ค 2 โผ ๐บ โฅ . . . . . . โฅ ๐ค ๐ โผ ๐บ 46
Proof: Step II. Find an auction ๐ต with more bidders and ๐ค 1 โผ ๐บ revenue โฅ the upper bound. ๐ค 2 โผ ๐บ . . . . . . ๐ค ๐ โผ ๐บ ๐ค ๐+1 โผ ๐บ 47
Proof: Step II. Find an auction ๐ต with more bidders and ๐ค 1 โผ ๐บ revenue โฅ the upper bound. ๐ค 2 โผ ๐บ Run Myerson โ s mechanism on . . . . ๐ bidders . . ๐ค ๐ โผ ๐บ ๐ค ๐+1 โผ ๐บ 48
Proof: Step II. Find an auction ๐ต with more bidders and ๐ค 1 โผ ๐บ revenue โฅ the upper bound. ๐ค 2 โผ ๐บ Run Myerson โ s mechanism on . . . . ๐ bidders . . ๐ค ๐ โผ ๐บ If Myerson does not allocate, give item to the additional ๐ค ๐+1 โผ ๐บ bidder 49
Proof: Step III. Show that the 2 nd price auction โ beats โ ๐ต . ๐ค 1 โผ ๐บ Observation. 2 nd price ๐ค 2 โผ ๐บ auction is the optimal . . mechanism out of the . . . . mechanisms that always ๐ค ๐ โผ ๐บ sell. ๐ค ๐+1 โผ ๐บ 50
Competition complexity of a single additive bidder Plan: Follow the 3 steps of the B-K proof. I. Upper-bound the optimal revenue. II. Find an auction ๐ต with more bidders and revenue โฅ the upper bound. III. Show that VCG โ beats โ ๐ต . Competition Complexity of Auctions 51 Eden et al. EC'17 Inbal Talgam-Cohen
Competition complexity of a single additive bidder and i.i.d. items Plan: Follow the 3 steps of the B-K proof. I. Upper-bound the optimal revenue. II. Find an auction ๐ต with more bidders and revenue โฅ the upper bound. III. Show that VCG โ beats โ ๐ต . Competition Complexity of Auctions 52 Eden et al. EC'17 Inbal Talgam-Cohen
I. Upper-bound the optimal revenue โข Single additive bidder and i.i.d. items ๐ค 1 โผ ๐บ ๐ค 2 โผ ๐บ . . . . . . ๐ค ๐ โผ ๐บ Competition Complexity of Auctions 53 Eden et al. EC'17 Inbal Talgam-Cohen
I. Upper-bound the optimal revenue Use the duality framework from [Cai Devanur Weinberg โ 16] . OPT โค ๐ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ >๐ค ๐โฒ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ <๐ค ๐โฒ E ๐คโผ๐บ ๐ เท ๐ 1โ๐บ ๐ค ๐ ๐ค = ๐ค โ ๐(๐ค) is the virtual valuation function. 54
I. Upper-bound the optimal revenue Use the duality framework from [Cai Devanur Weinberg โ 16] . OPT โค ๐ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ >๐ค ๐โฒ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ <๐ค ๐โฒ E ๐คโผ๐บ ๐ เท ๐ Distribution appears in proof only! 1โ๐บ ๐ค ๐ ๐ค = ๐ค โ ๐(๐ค) is the virtual valuation function. 55
I. Upper-bound the optimal revenue Use the duality framework from [Cai Devanur Weinberg โ 16] . OPT โค ๐ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ >๐ค ๐โฒ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ <๐ค ๐โฒ E ๐คโผ๐บ ๐ เท ๐ Take item ๐ โ s virtual value if it โ s the most attractive item 1โ๐บ ๐ค ๐ ๐ค = ๐ค โ ๐(๐ค) is the virtual valuation function. 56
I. Upper-bound the optimal revenue Use the duality framework from [Cai Devanur Weinberg โ 16] . OPT โค ๐ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ >๐ค ๐โฒ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ <๐ค ๐โฒ E ๐คโผ๐บ ๐ เท ๐ Take item ๐ โ s value if there โ s a more attractive item 1โ๐บ ๐ค ๐ ๐ค = ๐ค โ ๐(๐ค) is the virtual valuation function. 57
II. Find an auction ๐ต with more bidders and revenue โฅ upper bound 58
II. Find an auction ๐ต with ๐ bidders and revenue โฅ upper bound 59
II. Find an auction ๐ต with ๐ bidders and revenue โฅ upper bound VCG for additive bidders โก 2 nd price auction for each item separately. Therefore, we devise a single parameter mechanism that covers item ๐ โ s contribution to the benchmark. E ๐คโผ๐บ ๐ ๐ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ >๐ค ๐ โฒ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ <๐ค ๐ โฒ 60
II. Find an auction ๐ต ๐ with ๐ bidders and revenue โฅ upper bound for item ๐ E ๐คโผ๐บ ๐ ๐ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ >๐ค ๐โฒ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ <๐ค ๐โฒ Run 2 nd price auction Item ๐ ๐ค ๐ โผ ๐บ with โ lazy โ reserve price = ๐ โ1 0 for agent ๐ ๐ค 1 โผ ๐บ 0 for agents ๐ โฒ โ ๐ . . . . . . ๐ค ๐ โผ ๐บ Competition Complexity of Auctions 61 Eden et al. EC'17 Inbal Talgam-Cohen
II. Find an auction ๐ต ๐ with ๐ bidders and revenue โฅ upper bound for item ๐ E ๐คโผ๐บ ๐ ๐ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ >๐ค ๐โฒ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ <๐ค ๐โฒ Case I: ๐ค ๐ > ๐ค ๐ โฒ for all ๐ โฒ : Item ๐ ๐ค ๐ โผ ๐บ ๐ wins if his virtual value is non-negative. ๐ค 1 โผ ๐บ Expected revenue = . . . . . . Expected virtual value ๐ค ๐ โผ ๐บ [Myerson โ 81] Competition Complexity of Auctions 62 Eden et al. EC'17 Inbal Talgam-Cohen
II. Find an auction ๐ต ๐ with ๐ bidders and revenue โฅ upper bound for item ๐ E ๐คโผ๐บ ๐ ๐ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ >๐ค ๐โฒ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ <๐ค ๐โฒ Case II : ๐ค ๐ < ๐ค ๐ โฒ for some ๐ โฒ : Item ๐ ๐ค ๐ โผ ๐บ The second price is at least ๐ค 1 โผ ๐บ the value of agent ๐ . . . . . . . ๐ค ๐ โผ ๐บ Competition Complexity of Auctions 63 Eden et al. EC'17 Inbal Talgam-Cohen
III. Show that VCG โ beats โ ๐ต Competition Complexity of Auctions 64 Eden et al. EC'17 Inbal Talgam-Cohen
III. Show that 2 nd price โ beats โ ๐ต(๐) Competition Complexity of Auctions 65 Eden et al. EC'17 Inbal Talgam-Cohen
III. Show that 2 nd price โ beats โ ๐ต(๐) โค 2 nd price with ๐ฉ(๐) with ๐ bidders โค Myerson with ๐ bidders ๐ + ๐ bidders Competition Complexity of Auctions 66 Eden et al. EC'17 Inbal Talgam-Cohen
III. Show that 2 nd price โ beats โ ๐ต(๐) โค 2 nd price with ๐ฉ(๐) with ๐ bidders โค Myerson with ๐ bidders ๐ + ๐ bidders ๏ The competition complexity of a single additive bidder and ๐ i.i.d. items is โค ๐ . FF Competition Complexity of Auctions 67 Eden et al. EC'17 Inbal Talgam-Cohen
Going beyond i.i.d items โข Single additive bidder and i.i.d. items ๐ค 1 โผ ๐บ 1 ๐ค 2 โผ ๐บ 2 . . . . . . ๐ค ๐ โผ ๐บ ๐ Competition Complexity of Auctions 68 Eden et al. EC'17 Inbal Talgam-Cohen
Going beyond i.i.d items + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ >๐ค ๐โฒ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ < ๐ค ๐โฒ E ๐ค 1 โผ๐บ ๐ ๐ 1 ๐ค 2 โผ๐บ 2 โฆ ๐ค ๐ โผ๐บ ๐ Item ๐ ๐ค ๐ โผ ๐บ ๐ Run 2 nd price auction ๐ค 1 โผ ๐บ with โ lazy โ reserve price = ๐ ๐ โ1 0 for agent ๐ . . . . . . 0 for agents ๐ โฒ โ ๐ ๐ค ๐ โผ ๐บ ๐ Competition Complexity of Auctions 69 Eden et al. EC'17 Inbal Talgam-Cohen
Going beyond i.i.d items + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ >๐ค ๐โฒ + ๐ค ๐ โ 1 โ๐ โฒ ๐ค ๐ < ๐ค ๐โฒ E ๐ค 1 โผ๐บ ๐ ๐ 1 ๐ค 2 โผ๐บ 2 โฆ ๐ค ๐ โผ๐บ ๐ Run 2 nd price auction Item ๐ ๐ค ๐ โผ ๐บ ๐ with โ lazy โ reserve price = ๐ โ1 0 for agent ๐ ๐ค 1 โผ ๐บ ๐ 0 for agents ๐ โฒ โ ๐ . . . . Cannot couple the event . . โ bidder ๐ wins โ and ๐ค ๐ โผ ๐บ ๐ โ item ๐ has the highest value โ Competition Complexity of Auctions 70 Eden et al. EC'17 Inbal Talgam-Cohen
Use a different benchmark + ๐ค ๐ โ 1 โ๐ โฒ ๐บ ๐ (๐ค ๐ )>๐บ ๐โฒ (๐ค ๐โฒ ) + ๐ค ๐ โ 1 โ๐ โฒ ๐บ ๐ (๐ค ๐ )<๐บ ๐โฒ (๐ค ๐โฒ ) E ๐ค 1 โผ๐บ ๐ ๐ 1 ๐ค 2 โผ๐บ 2 โฆ ๐ค ๐ โผ๐บ ๐ Item ๐ ๐ค ๐ โผ ๐บ ๐ ๐ค 1 โผ ๐บ ๐ . . . . . . ๐ค ๐ โผ ๐บ ๐ Competition Complexity of Auctions 71 Eden et al. EC'17 Inbal Talgam-Cohen
Use a different benchmark + ๐ค ๐ โ 1 โ๐ โฒ ๐บ ๐ (๐ค ๐ )>๐บ ๐โฒ (๐ค ๐โฒ ) + ๐ค ๐ โ 1 โ๐ โฒ ๐บ ๐ (๐ค ๐ )<๐บ ๐โฒ (๐ค ๐โฒ ) E ๐ค 1 โผ๐บ ๐ ๐ 1 ๐ค 2 โผ๐บ 2 โฆ ๐ค ๐ โผ๐บ ๐ Item ๐ ๐ค ๐ โผ ๐บ ๐ ๐ค 1 โผ ๐บ ๐ . . . . . . ๐ค ๐ โผ ๐บ ๐ ๏ The competition complexity of a single additive bidder and ๐ items is โค ๐ .
Going beyond a single bidder โข Step I: โ Benchmark more involved โข Step II: โ Devise a more complex single parameter auction A(j) (involves a max) โ Proving A(j) is greater than item j โ s contribution to the benchmark is more involved and requires subtle coupling and probabilistic claims BB Competition Complexity of Auctions 73 Eden et al. EC'17 Inbal Talgam-Cohen
EXTENSION TO CONSTRAINTS Competition Complexity of Auctions 74 Eden et al. EC'17 Inbal Talgam-Cohen
Recall โข Example of โ downward closed โ constraints: Sets of size 1 and { } are feasible Total value = $16 Substitutes $6 $5 Complements $10 Competition Complexity of Auctions 75 Eden et al. EC'17 Inbal Talgam-Cohen
Extension to downward closed constraints Add โค VCG ๐+๐ท Add OPT ๐ Competition complexity โค ๐ท Competition Complexity of Auctions 76 Eden et al. EC'17 Inbal Talgam-Cohen
Extension to downward closed constraints DC โค Add โค VCG ๐+๐ท Add OPT ๐ OPT ๐ Competition Larger complexity outcome โค ๐ท space Competition Complexity of Auctions 77 Eden et al. EC'17 Inbal Talgam-Cohen
Extension to downward closed constraints DC โค Add โค VCG ๐+๐ท DC Add OPT ๐ โค VCG ๐+๐ท+๐โ1 OPT ๐ Competition Larger complexity outcome โค ๐ท space Competition Complexity of Auctions 78 Eden et al. EC'17 Inbal Talgam-Cohen
Extension to downward closed constraints DC โค Add โค VCG ๐+๐ท DC Add OPT ๐ โค VCG ๐+๐ท+๐โ1 OPT ๐ Competition Larger complexity outcome โค ๐ท space The competition complexity of ๐ additive bidders with identical downward closed constraints over ๐ items is โค ๐ท + ๐ โ 1 .
Extension to downward closed constraints Main technical challenge DC โค Add โค VCG ๐+๐ท DC Add OPT ๐ โค VCG ๐+๐ท+๐โ1 OPT ๐ Competition Larger complexity outcome โค ๐ท space The competition complexity of ๐ additive bidders with identical downward closed constraints over ๐ items is โค ๐ท + ๐ โ 1 .
Claim. VCG revenue from selling ๐ items to ๐ = ๐ + ๐ซ additive bidders whose values are i.i.d. draws from ๐บ โค VCG revenue from selling them to ๐ + ๐ โ ๐ bidders with i.i.d. values drawn from ๐บ , whose valuations are additive s.t. identical downward-closed constraints. Competition Complexity of Auctions 81 Eden et al. EC'17 Inbal Talgam-Cohen
Add โค VCG ๐+๐โ1 DC VCG ๐ VCG for additive bidders โก 2 nd price auction for each item separately. Add = Therefore, the revenue from item ๐ in VCG ๐ 2 nd highest value out of ๐ i.i.d. samples from ๐ฎ ๐ . Competition Complexity of Auctions 82 Eden et al. EC'17 Inbal Talgam-Cohen
Add โค VCG ๐+๐โ1 DC VCG ๐ 83
Add โค VCG ๐+๐โ1 DC VCG ๐ 84
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 85
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 3 6 4 4 5 1 3 4 2 3 2 1 86
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 3 6 4 4 5 1 3 4 2 3 2 1 87
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 3 6 4 Claim. Revenue for item ๐ in DC 4 5 1 VCG ๐+๐โ1 โฅ value of the highest unallocated bidder for 3 4 2 item ๐ . 3 2 1 88
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 3 6 4 4 5 1 3 4 2 3 2 1 89
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 3 6 4 4 5 1 3 4 2 3 2 1 90
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 3 6 4 4 5 1 3 4 2 3 2 1 91
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 3 6 4 4 5 1 3 4 2 Externality at least 9 3 2 1 92
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 3 6 4 4 5 1 3 4 2 3 2 1 93
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 3 6 4 4 5 1 3 4 2 3 2 1 94
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 3 6 4 4 5 1 3 4 2 3 2 1 95
Add โค VCG ๐+๐โ1 DC VCG ๐ 5 โผ ๐บ 7 โผ ๐บ 2 โผ ๐บ 3 6 4 4 5 1 3 4 2 Externality at least 2 3 2 1 96
Add โค VCG ๐+๐โ1 DC VCG ๐ Competition Complexity of Auctions 97 Eden et al. EC'17 Inbal Talgam-Cohen
Add โค VCG ๐+๐โ1 DC VCG ๐ 2 nd highest Highest value Add (๐) = DC of ๐ samples of unallocated โค VCG ๐ VCG ๐+๐โ1 (๐) from ๐บ bidder for ๐ ๐ Competition Complexity of Auctions 98 Eden et al. EC'17 Inbal Talgam-Cohen
Add โค VCG ๐+๐โ1 DC VCG ๐ 2 nd highest Highest value Add (๐) = DC of ๐ samples โค of unallocated โค VCG ๐ VCG ๐+๐โ1 (๐) from ๐บ bidder for ๐ ๐ Competition Complexity of Auctions 99 Eden et al. EC'17 Inbal Talgam-Cohen
Add โค VCG ๐+๐โ1 DC VCG ๐ 2 nd highest Highest value Add (๐) = DC of ๐ samples โค of unallocated โค VCG ๐ VCG ๐+๐โ1 (๐) from ๐บ bidder for ๐ ๐ DC Identify ๐ bidders in VCG ๐+๐โ1 before sampling their value for item ๐ out of which at most one will be allocated anything Competition Complexity of Auctions 100 Eden et al. EC'17 Inbal Talgam-Cohen
Recommend
More recommend