the anthropogenic impact of
play

The anthropogenic impact of cross-borders water resources - PowerPoint PPT Presentation

Lebanon Syria Israel Jordan Palestinian Authority The anthropogenic impact of cross-borders water resources development on the water quality of the Jordan River Eilon M. Adar & Sylvie Massoth eilon@bgu.ac.il The Sea of Galilee - The only


  1. Lebanon Syria Israel Jordan Palestinian Authority The anthropogenic impact of cross-borders water resources development on the water quality of the Jordan River Eilon M. Adar & Sylvie Massoth eilon@bgu.ac.il

  2. The Sea of Galilee - The only natural fresh water reservoir in the Middle East Yarmuk River Sea of Galilee

  3. The Jordan River basin is a cross-borders trans-boundary basin shared by Lebanon, Syria, Jordan, Palestinian Authority and Israel. Salt & brines carrier Upper Jordan river 20M/y 500-600M/y Water Budget Flood in the Yarmuk river 250-550M/y

  4. 80-120M/y National water carrier Jordan River 250-350M/y Jordan River Winter Floods ( surplus ) 250-350M/y

  5. Jordan River Basin The Jordan Valley Basin North Sea of Central Galilee South Dead Sea

  6. Sea of Galilee Historical flow rates 480Mm 3 Yarmouk River ~450 Mm3 Wadi Arab ~28 Mm3 Zarka River ~65 Mm3 ~1,250-1,370 Mm3 Dead Sea

  7. Sea of Galilee Current Jordan River flow ! Sewage+ D. dam Brines 27 27M/y 27 Adasiya D. 38M/y King Abdalla Canal (~150) Amman waste water 30-40 King Talal dam 35 Irrigation Irrigation from west 60-70 MCM ~30 MCM 60 -200 MCM Dead Sea

  8. Water Sources & Water Quality of the Lower Jordan River

  9. Identifying & Quantifying the Current Sources ! Sea of Galilee Effluents (industrial, domestic, fish ponds etc.) Irrigation-subsurface return flow (drains) Springs Streams Seepage from shallow aquifers Dead Sea Study area

  10. The Mixing Cells Modeling (MCM) concept Water Balance Expression W n q n1 Leakage from the clay & marls formations R I J    n n n      0 Q q q W S ( 1 ) rn in nj n n    r 1 i 1 j 1 R I J    n n n       Q q q W S ( 2 ) n n n rn in nj    1 1 1 r i j All potential sources are identified

  11. Mass Balance Expression C rk Q rn C ink C nk C ink   R I J            C Q C q C q W S ( 3 ) ink nk n n rk rn in nj nk      r 1 i 1 j 1 Every source is designated by a unique hydro-chemical composition

  12. R I J    n n n      Water Q q q W n rn in nj n Balance    r 1 i 1 j 1 Expression   R I J            C Q C q C q W S ink nk n n rk rn in nk nj 1 1   1 1    r 1 i 1 j 1   R I J            C Q C q C q W S ( 4 ) ink nk n n rk rn in nj nk 2 2 2   2    r 1 i 1 j 1   Mass Balance R I J            C Q C q C q W S Expressions ink nk n n rk rn in nk nj 3 3   3 3    r 1 i 1 j 1       R I J            C Q C q C q W S inK nK n n rK rn in nK nj      r 1 i 1 j 1

  13.   C X P E ( 5 ) n n n n        1 , 1 , , 1 , 1 , 1 , , 1 , 1 , , 1          C , C , , C , C , C , , C , C , , C r nk r nk Rnk i nk i nk Ink nk nk 1 1 2 1 1 1 1 2 1 1 1 1         C C , C , , C , C , C , , C , C , , C ( 6 )   r nk r nk Rnk i nk i nk Ink nk nk 1 2 2 2 2 1 2 2 2 2 2 2 n                    C , C , , C , C , C , , C , C , , C   r nK r nK RnK i nK i nK InK nK nK 1 2 1 2           K 1 R I J n n n   Q   r 1   Q  r  2      Q   R n   q   i 1   q    i X ( 7 ) 2 n           q W S n n I     n      q C W S nk n nj n   1 1      q  C W S  nj  nk n  2  n 2 P ( 8 )    n    C W S   nk n   3 n q     nJ      n    R I J 1 n n n       n   C W S nK n      n   K 1 1 nk 1       nk E 2 ( 9 ) N N n          nk T 3 J E E ( C X P ) ( C X P )  (10 ) n n n n n n n          n 1 n 1 nK K 1 1

  14. Sampling stations (north) Hydro-chemical & Isotopes Data Uri Shavit Technion, Haifa, Israel Avner Vengosh Ben Gurion University, Israel Duke University, NC USA Efrat Farber Ben Gurion University, Israel

  15. Modeling (north) JR-70 JR-69 JR-68 JR-67 – Yarmouk River JR-68 A B1 JR-64 Cell-65 Bore hole B4 River input Cell B6 JR-62 JR-54

  16. Sampling stations (south) Farber et al. 2004

  17. Modeling (south) JR - 53 - Jordan River Input Cell - 1 Cell - 2 Cell - 3 Cell - 4 River input Cell Source Cell - 5

  18. MCM Results for single compartments/segments along the Lower Jordan Valley Average hydro-chemical and isotopic data for the winter (September 2000-February 2001) and summer (March 2001-August 2001). Cell 1 : Results for the upper Jordan River at Alumot dam - Alumot Bridge

  19. Cell Source winter 00-01 summer 01 %cell %cell % diff. % diff. inflow inflow Cell_4 Gesher 1.60% 3.32% Cell_3 77.3 97.2 W.Surf.Inflow_12 5 - Naharayim 22.7 2.93

  20. Zarzir Station 79.5% Zarqa River 6.3 Adam Bridge Rassif 0.6% Abu Mayyala 4.5% Aqraa .6% Mallah Gdeida 7.9% Wadi el Ah'mar 0.6% Mallaha Gilgal Zur el mandase Uga Melecha 0.1% 103.1 Allenby Bridge

  21. Gibton 21.3% Rajib Seebiya Wadi Hawwaya 0.8% Adam Bridge Zarqa River 14.9% Tirtcha Uper 11.8% Aqraa 0.2%, 0.3% Mallah Gdeida 2.6% Tovlan Station Abu Mayyala 5.1% Wadi el Ah'mar 0.2% Mallaha 1.3%, 1.1% Gilgal Zur el mandase Uga Melecha 22.0%, 18.5% Allenby Bridge

  22. The MCMsf Model enabled to assess the current fluxes and discharge of water sources along the Jordan River ! Thank you for your attention Eilon Adar (eilon@bgu.ac.il)

Recommend


More recommend