The 16 th U.S.-Korea Forum on Nanotechnology nanshulu@utexas.edu
Bioelectronics – Closing the Loop for Internet of Health (IoH) Data Analytics Medical diagnosis Signal Processing Prof. Dae-Hyeong Kim Seoul National Univ. Biomarker Sensing Mobile/Home Treatment 2 Choi, Kim* , et al., Adv. Mater. 28, 4203 (2016). nanshulu@utexas.edu
Example Applications of Wearable Electronics HUMAN-ROBOT MOBILE HEALTH & INTERFACE PERSONALIZED MEDICINE BRAIN-COMPUTER INTERFACE PROSTHESIS REHABILITATION 3 nanshulu@utexas.edu
Silicon vs. Skin – A Mechanical Challenge E Si = 130 GPa, e frac = 1% E Skin = 130 kPa, e ouch = 20% Credit: Intel Credit: ICTGraphicsLab @ USC 4 nanshulu@utexas.edu
Lu Research Group Mechanics of Flexible and Freeform Manufacture Stretchable Structures Adv. Mater. 27, 6423-6430 (2015) Sensors 13, 8577-8594 (2013) EML 2, 37-45 (2015) IJSS 51, 4026-4037 (2014) ACS Nano 11, 7634 – 7641 (2017) IJF 190, 99 (2014) Nat. Photonics 8, 643 – 649 (2014) Adv. Mater. Tech. 1800600 (2019) ACS Nano 8, 12265 – 12271 (2014) Adv. Mater. Tech. 1900117 (2019) EML 2, 37-45 (2015) Curr. Opin. Solid St. M. 19, 149-159 (2015) IJSS 87, 48-60 (2016) Smart Mater. Struct. 25, 035037 (2016) JAM 84, 021004 (2017) Light 7, e17138 (2018) JAM 86 , 051010 (2019) E-Tattoo Soft Bioelectronics Skin Nature Nanotech. 9, 397 – 404 (2014) 2D Materials & Devices Adv. Mater. 27, 6423-6430 (2015) Bio-Electronics Interface ACS Nano 9, 5937-5946 (2015) Adv. Mater. Interface 2, 1500176 (2015) Nature Nanotech. 11, 566-572 (2016) Nano Lett. 15, 1883 – 1890 (2015) JMR 30, 2702-2712 (2015) Sci. Transl. Med. 8, 86 (2016) Nature Nanotech. 11, 566-572 (2016) ACS Nano 11, 7634 – 7641 (2017) Adv. Healthc. Mater. 5, 80-87 (2015) EML 13, 42-77 (2017) JAM 83, 041007 (2016) Nature Comm. 8,1664 (2017) ACS Nano 11, 7634 – 7641 (2017) Soft Robotics 3, 99-100 (2016) npj Flexible Electronics 2, 6 (2018) Nano Lett . 17, 5464 (2017) Adv. Funct. Mater. 26, 3207-3217 (2016) Sensors 18, 1269 (2018) npj 2D Materials and Applications 2 , 19 (2018) JAM 84, 111003 (2017) Micromachines 9, 170 (2018) PNAS 115, 7884 (2018) EML 15, 130 (2017) Adv. Funct. Mater. 1808247 (2019) PRL 121, 266101 (2018) J. Roy. Soc. Interface 14, 20170377 (2017) Adv. Mater. Tech. 1900117 (2019) Nature 567, 71 (2019) Soft Matter 14, 8509 (2018) Adv. Sci. 1900290 (2019) 2D Materials , accepted (2019) EML 30, 100496 (2019) NPG Asia Materials 11, 43 (2019) JMPS , revision submitted (2019)
Serpentine Ribbons – 2D Springs Stretchability and compliance can be achieved by serpentine structures of ANY material. e max e app = 114% 0 2% Widlund, Yang, Hsu, Lu*, IJSS 51, 4026 (2014). Yang, Lu*, et al , IJF 190, 99 (2014). Yang, Lu*, et al , EML 2, 37 (2015). Yang, Qiao, Lu*, JAM 84, 021004 (2016). 6 Liu, Ha, Lu*, JAM 86, 051010 (2019) nanshulu@utexas.edu
Epidermal Electronics (E-Tattoos) Ultrathin, ultrasoft, noninvasive, stretchable and multifunctional 400 60 400 60 Amplitude ( V) Amplitude ( V) up down 0 0 30 30 -400 -400 0 0 -800 -800 -30 -30 0 1 2 3 0 1 2 3 60 Amplitude ( V) 400 Time (sec) Amplitude ( V) 400 Time (sec) 60 Amplitude ( V) right left 40 0 0 30 20 -400 -400 0 0 Wrist Neck -800 -800 -20 -30 0 1 2 3 0 1 2 3 Time (sec) Time (sec) 90 skin: 160 kPa up right 0.5mm Stress (kPa) y: 150 kPa 60 x: 130 kPa FEM x FEM y 30 Au 0.5µm PI left down y Ecoflex 30µm 0 0 5 10 15 20 25 30 Ecoflex EP sensor Strain (%) x 7 Kim†, Lu†, Ma† (†equal contribution), Rogers*, et al. , Science 333 , 838, (2011). nanshulu@utexas.edu
Ultra-Soft & Ultra-Thin Ultimate Conformability Conventional Non-Conformal Conformable contact ensures Skin • Low interface impedance higher signal to noise ratio Partially conformal • No slippage less motion artifacts, more accurate Skin measurement of skin deformation Fully-Conformal E-Tattoo • Better heat or mass transfer across the skin-tattoo interface 𝜽 Skin Ecoflex on skin 𝒖 = 𝟔 𝛎𝐧 𝝁 = 𝟑𝟔𝟏 𝛎𝐧 𝒊 𝟏 = 𝟔𝟏 𝛎𝐧 Conformability ഥ 𝑭 𝒕 = ഥ 𝑭 𝒏 = 𝟘𝟑 𝐥𝐐𝐛 𝜹 = 𝟔𝟏 𝐧𝐊/𝐧 𝟑 𝒖 = 𝟒𝟕 𝛎𝐧 𝒖 = 𝟐𝟏𝟏 𝛎𝐧 𝒖 (𝛎𝐧) 8 Wang, Lu*, JAM 83 , 041007 (2016). Jeong, Rogers* et. al. , Adv. Mater. 25, 6839 (2013). nanshulu@utexas.edu
World’s Thinnest Materials – 2D Materials Electronically functional Atomically thin (nm) Optically transparent Mechanically robust (cuttable) Chemically inert Potentially low cost 9 Jang, Lu*, et al. , npj 2D Materials and Applications (invited review) , in preparation (2019). nanshulu@utexas.edu
Cut-and-Paste Manufacture of Graphene E-Tattoo Sensors (GETS) ECCS-1541684 Dry patterning Wet transfer Prof. Deji Akinwande UT-Austin ECE Dr. Shideh K. Ameri UT-Austin ECE (Queen’s University, Canada) 10 Ameri, Akinwande*, Lu*, et al. , ACS Nano 11, 7634 (2017). nanshulu@utexas.edu
GETS Characterization GETS Serpentine 11 Ameri, Akinwande*, Lu*, et al. , ACS Nano 11, 7634 (2017). nanshulu@utexas.edu
Stretchability of Graphene/PMMA Au/PET Double-sided tape (DST) Stage I GB Connector (0-0.9%) Defect ɛ Tegaderm Stage II Micro- crack (0.9-2.5%) Cross-Section (Graphene) ɛ PET Au Gr PMMA Tegaderm DST Stage III 70 (2.5-8%) 100 nm Au on Monolayer graphene ɛ 60 300-nm PMMA on 300-nm PMMA 50 R/R 0 40 Stage IV 30 (8%-Break) ɛ 20 10 Straight ribbons Macro- crack 0 (PMMA) 0 2 4 6 8 10 12 14 16 18 20 Applied Strain (%) 12 Jang, Lu*, et al. , 2D Materials , accepted (2019). nanshulu@utexas.edu
GETS Are Fully Conformable to the Skin 500-nm thick 13 Ameri, Akinwande*, Lu*, et al. , ACS Nano 11, 7634 (2017). nanshulu@utexas.edu
GETS Are as Deformable as Skin 14 Ameri, Akinwande*, Lu*, et al. , ACS Nano 11, 7634 (2017). nanshulu@utexas.edu
Multifunctional GETS 15 Ameri, Akinwande*, Lu*, et al. , ACS Nano 11, 7634 (2017). nanshulu@utexas.edu
Transparent GETS for Electrooculogram (EOG) Normal Sour-face Laugh Frown Up (+) Right (-) Left (+) Down (-) Right-Left Channel Up-Down Channel Ground 16 Ameri, Akinwande*, Lu*, et al. , npj 2D Materials and Applications 2, 19 (2018). nanshulu@utexas.edu
Imperceptible Human Robot Interface (HRI) by GETS 17 Ameri, Akinwande*, Lu*, et al. , npj 2D Materials and Applications 2, 19 (2018). nanshulu@utexas.edu
Graphene-Based E-Tattoo for Diabetics Prof. Dae-Hyeong Kim Seoul National Univ. 18 Lee, Lu, Kim*, et al. , Nat. Nanotech. 11, 566-572 (2016). nanshulu@utexas.edu
Going Wireless – Near Field vs. Far Field Technology Near Field (Induction) Far Field (Radiation) Advantage Disadvantage Advantage Disadvantage • Less power • Data transfer rate • Data transfer rate • Battery powered consumption : 424 kpbs : 3 Mbps • Passive mode • Operating range • Operating range without battery : ~10 cm : ~10 m 1 1 DOMINANT TERMS IN THE REGION ( Power density attenuation) 𝑠 6 𝑠 2 𝒔 : distance 19 nanshulu@utexas.edu
“Cut -Solder- Paste” Method for Integrating ICs on E -Tattoos d a b c Cutting Water e f Pasting Soldering g h Cu foil Thermal Release Tape Water Soluble Tape Kapton Tape Water Tegaderm 20 Jeong, Lu*, et al. , Adv. Mater. Tech. 1900117 (2019). nanshulu@utexas.edu
Robustness of Wireless E-Tattoos 22 Jeong, Lu*, et al. , Adv. Mater. Tech. 1900117 (2019). nanshulu@utexas.edu
Assembly and Disassembly up to 20 times A B C D NFC+Temp // SpO 2 20 repetitions Peeling off Peeled off Laminating Laminated E SpO 2 layers 23 Jeong, Lu*, et al. , Adv. Mater. Tech. 1900117 (2019). nanshulu@utexas.edu
Acknowledgement 24 nanshulu@utexas.edu
Recommend
More recommend