technicolor after the higgs discovery
play

Technicolor after the Higgs Discovery Francesco Sannino SCGT12 @ - PowerPoint PPT Presentation

Technicolor after the Higgs Discovery Francesco Sannino SCGT12 @ Nagoya 2012 September 2011 CP3-DESY-Goettingen School 11-14 October 2011 Thursday, December 6, 12 Now Atoms 4% Dark Energy Dark Matter 74% 22% ? ? Thursday, December 6,


  1. Technicolor after the Higgs Discovery Francesco Sannino SCGT12 @ Nagoya 2012 September 2011 CP3-DESY-Goettingen School 11-14 October 2011 Thursday, December 6, 12

  2. Now Atoms 4% Dark Energy Dark Matter 74% 22% ? ? Thursday, December 6, 12

  3. Future pie ? ๏ New weak & strong forces ๏ Composite Higgs/SM ๏ Composite dark matter ๏ Composite inflation ๏ .... Thursday, December 6, 12

  4. The scent of the Higgs Thursday, December 6, 12

  5. 2 bumps Thursday, December 6, 12

  6. Higgs discovery ? 6 σ SM Higgs Expectation Thursday, December 6, 12

  7. Fundamental ? ๏ Would be the first time ๏ Spinors are space-time constituents ๏ Scalars are derived ๏ Susy? Can be emergent In <4d: Sung-Sik Lee 06 4d: Antipin, Mojaza, Pica, Sannino 10 Thursday, December 6, 12

  8. Compositeness ๏ Only Higgs sector is composite [Technicolor] ๏ Standard Model Fermions are composite [Preons] ๏ Partial compositeness: Bosonic/SUSY Technicolor ... ๏ X compositeness [Magnetic Standard Model] Sannino 11 Thursday, December 6, 12

  9. What LHC has not seen, yet! ๏ Extra large, small or medium dimensions [kk states,..] ๏ Any sign of supersymmetry [gluino,...] ๏ Extra, mini, large Black-Holes [low scale gravity] In line with: Composite dynamics Thursday, December 6, 12

  10. Technicolor Thursday, December 6, 12

  11. Is “Old” Technicolor dead? 0.5 SU(3) + 1 Fund. Doublet 0.4 Weinberg, Susskind 0.3 1 TeV M H = F T C 0.2 T M σ ' 1 . 5 TeV F π 0.1 0.0 - 0.1 - 0.2 0.0 0.2 0.4 S TC alone = massless SM fermions Extend TC to generate fermion masses [Eichten & Lane] Old TC was dead 2 decades ago! Thursday, December 6, 12

  12. Need to go beyond QCD ๏ TC-fermion condensate enhancement/FCNC decoupling ๏ Minimal Technicolor passing precision tests ๏ Need a Technicolor Higgs ๏ Dark matter candidates Thursday, December 6, 12

  13. Walking   IR Conformal behavior   UV IR      Holdom, Appelquist, Miranski, Yamawaki, Wijewardhana... Thursday, December 6, 12

  14. Knobs Gauge Group: SU, SO, SP, Exceptional Matter Representation # of Flavors per Representation QCD IR Conformal Infrared free N f ?            Thursday, December 6, 12

  15. A novel phase @ large Nf Interesting structure at large Nf Pica & Sannino 10 First coefficients at large Nf are known Ciuchini, Derkachov, Gracey, Manashov ‘99 QCD IR Conformal Asymp. Safe N f α     Energy      3 π α UV = T F N f Thursday, December 6, 12

  16. Universal Picture Thursday, December 6, 12

  17. SU(N) Phase Diagram  18 Very interesitng SU(N) 16 Fund Pica & Sannino 10  Ryttov & Shrock 10 14  Poppitz & Unsal 9, 10 12   Ryttov & Sannino 07 Dietrich & Sannino 07 10 Sannino & Tuominen 04    n f  8 A-Sym 6 4 Sym   2 Adj 2 3 4 5 6 7 8 N Thursday, December 6, 12

  18. Lattice SU(N) Diagram 18 SU(N) 16 Fund 14 12 10 n f 8 A-Sym 6 4 Sym 2 Adj 2 3 4 5 6 7 8 N Thursday, December 6, 12

  19. SO H 2n + 2 L 12 22 SO(N) Mojaza, Pica, Ryttov Sannino 12 20 Ladder 10 18 Sannino 09 16 8 Four Loops g * = 1 Pica & Sannino 10 14 6 n f 12 All Orders g * = 1 n f SO H 2n + 1 L 10 18 4 Mojaza, Pica, Ryttov Sannino 12 8 Ladder 16 6 2 14 4 Four Loops g * = 1 n f 12 2 5 6 7 8 12 Ladder N 10 2 3 4 5 6 7 8 All Orders g * = 1 10 n f Four Loops g * = 1 n 8 8 6 All Orders g * = 1 6 4 Mojaza, Pica, Ryttov Sannino 12 4 l a n 2 o i t p e c x 2 E 2 3 4 5 6 7 8 G 2 F 4 E 6 E 7 E 8 ê Ad n Thursday, December 6, 12

  20. Walk or Jump ? Thursday, December 6, 12

  21. Walking 0.1 0.0 - 0.1 β MY = − α 2 � ( α − 1) 2 − δ � b MY d=- 0.2 - 0.2 d=- 0.1 δ = n f − n c d= 0 f - 0.3 d= 0.1 Sannino 2012 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 a 1.4 1.2 Miransky 85 1.0 Miransky & Yamawaki 89 0.8 a H m L Miransky & Yamawaki 97 d= 0.0005 0.6 d=- 0.001 Yamawaki, Bando, Matumoto 86 d=- 0.002 0.4 d=- 0.01 Appelquist, Karabali, Wijewardhana 86 d=- 1 ê 8 0.2 0.0 - 120 - 100 - 80 - 60 - 40 - 20 0 ln m Thursday, December 6, 12

  22. Condensate Enhancement Z α ( µ ) ! γ ( α ) h ¯ h ¯ QQ i µ = exp d α QQ i Λ � α 2 (( α � 1) 2 + | δ | ) α ( Λ ) ⇣ µ ! Z α ( µ ) 1 ⌘ γ (1) h ¯ h ¯ ' exp γ (1) d α QQ i Λ = QQ i Λ β MY Λ α ( Λ ) Thursday, December 6, 12

  23. Jumping d=- 0.2 d= 0.2 2 d=- 0.05 d= 0.05 1 d= 0 d= 0 1 0 0 b Jump b Jump - 1 - 1 - 2 - 2 - 3 - 4 - 3 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 a a 1.2 d=- 0.05 β Jump = − α 2 1 − δ − α d=- 0.1 1.0 d=- 0.2 1 − α d= 0 0.8 δ = n f − n c d= 0.05 a H m L f 0.6 d= 0.1 ⇣ µ 0.4 ⌘ h ¯ h ¯ QQ i µ ' γ (1) ln QQ i Λ Λ 0.2 0.0 - 10 - 8 - 6 - 4 - 2 0 Sannino 2012 ln m Thursday, December 6, 12

  24. Walking or Jumping? 1.4 L MY L Jump 1.2 1.0 1 − ( n c n c ⇥ � �⇤ Λ Jump = Λ c f − n f ) ln f − n f L @ n f D 0.8 0.6 0.4 " # µ 0 π Λ MY = exp 0.2 − n c 2 p n c f − n f f − n f 0.0 0.80 0.85 0.90 0.95 1.00 1.05 n f c n f Thursday, December 6, 12

  25. SU(N) Phase Diagram 18 SU(N) 16 Fund 14 12 ? n o i g e r g n 10 i k l a W n f 8 A-Sym 6 4 Sym 2 Adj 2 3 4 5 6 7 8 N Thursday, December 6, 12

  26. Calculable 4D Walking Example Antipin, Di Chiara, Mojaza, Mølgaard, Sannino 1205.6157 Grinstein, Uttayarat 1105.2370 Antipin, Mojaza, Sannino 1107.2932 Thursday, December 6, 12

  27. Walking 4D Gauge theory  � − 1 2 F µ ν F µ ν + i ¯ DQ + ∂ µ H † ∂ µ H + y H QHQ λ / D λ + Qi / Tr − u 1 ( Tr [ H † H ]) 2 − u 2 Tr ( H † H ) 2 . Fields [ SU ( N c )] SU ( N f ) L SU ( N f ) R U (1) V U (1) AF Adj 1 1 0 1 λ N f − N c − N c 1 q ⇤ ⇤ N c N f − N f − N c − N c 1 e q ⇤ ⇤ N c N f 2 N c 1 0 H ⇤ ⇤ N f Adj 1 1 0 0 G µ Antipin, Mojaza, Sannino 2011 Thursday, December 6, 12

  28. Conformal Window and Walking 4.50 β 4.45 α N f N c 0.0 4.40 4.42 - 0.5 - 1.0 4.4167 10 5 âb a g - 1.5 4.4133 12% of the CW is Walking - 2.0 4.35 x = 4.41 - 2.5 - 3.0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 a g 4 6 8 10 12 14 16 18 N c Antipin, Di Chiara, Mojaza, Mølgaard, Sannino 2012 Thursday, December 6, 12

  29. A Minimal TC template Thursday, December 6, 12

  30. Since 2004 - Minimal WTC is Higgsfull [Original Name: Light Composite Higgs] U G t-up U(1) Higgs t-glue D N SU(2) t-down Extra SU(2) Neutrino ζ ๏ Extra Can feature Light TC/Dilaton Higgs SU(3) Electron Higgs ๏ Smallest S-parameter & FCNC Sannino, Tuominen 04 ๏ Dark matter candidates Hong, Hsu, Sannino 04 Dietrich, Sannino, Tuominen 05 Being analyzed by ATLAS & CMS Thursday, December 6, 12

  31. TC Higgs TC - Higgs is the lightest spin-0 scalar made of TC-fermions H ∼ c 1 ¯ QQ + c 2 ¯ QQ ¯ QQ + · · · Will contain also a techniglue component QCD lightest scalar is f 0 (500) with mass ~ 400-550 MeV Sannino & Schechter 95 PRD [‘t Hooft 1/N, crossing, chiral, pole mass] Harada, Sannino & Schechter 95 PRD [f 0 (980)], 96PRL Pelaez - Confinement X - lecture Thursday, December 6, 12

  32. Higgs Effective Theory ◆ v 2 ✓ 1 + 2 r π v H + s π 4 Tr D µ U † D µ U + 1 v 2 H 2 2 ∂ µ H ∂ µ H L = L SM + ⌘ " ! # 1 + r t 1 ⇣ 2 + T 3 m t v H q L U q R + h . c . − ⌘ " ! # 1 + r b 1 ⇣ 2 − T 3 m b v H q L U q R + h . c . + · · · − ✓ 1 ◆ µ ν B µ ν Tr T a UT 3 U † + O ∆ S W a q ≡ ( t, b ) − M ρ ⇣ ⌘ v ' 246 GeV U = exp i π a T a /v µ T a U + ig 0 UB µ T 3 D µ U ≡ ∂ µ U − igW a Thursday, December 6, 12

  33. EW - corrections 2 m 2 µ W − µ + m 2 W r π Z r π H Z µ Z µ − m t r t H W + H ¯ L H t t ⊃ v v v m 2 µ W − µ + m 2 W s π Z s π H 2 W + H 2 Z µ Z µ + v 2 2 v 2 W Z t H ) 2 + 3(4 πκ F Π ) 2 W + m 2  ✓ ◆� M 2 H = ( M TC − 4 r 2 t m 2 m 2 Z t + 2 s π + ∆ M 2 H (4 πκ F Π ) 16 π 2 v 2 2 Foadi, Frandsen, Sannino, 12 Thursday, December 6, 12

  34. How light is the TC-Higgs ? k r t ~ TC x ETC ( M TC H ) 2 ' M 2 H + 12 κ 2 r 2 t m 2 t F Π = v 1200 1000 800 TC H GeV L 600 M H 400 200 0.0 0.5 1.0 1.5 2.0 k r t Not too light! Thursday, December 6, 12

  35. Geometric not too light TC Higgs Modify underlying gauge geometric structure Change # of TC-colors, matter repr., EW doublets By geometric scaling QCD f 0 (500) to EW we have 1 M T C ' 1 . 8 TeV H p N D d ( R T C ) N T C ± 1 d (2 − index T C ) = N T C 2 Sannino 08 Physical Higgs mass via gauge geometry Sannino & Schechter 07 Foadi, Frandsen, Sannino 12 Thursday, December 6, 12

  36. Minimal TC states to discover Higgs - like H R 1 , 2 TC Axial - Vector States Beyond minimal: (E)TC model dependent TC pions Π TC composite fermions Ψ Elementary Leptons L Unexpected ...... U Thursday, December 6, 12

Recommend


More recommend