T H E I M PA C T O F E A R T H S C AT T E R I N G S O N L I G H T D A R K M AT T E R D E T E C T I O N T I M O N E M K E N ( C P ³ - O R I G I N S , O D E N S E ) Based on: [arXiv:1706.02249]* [arXiv:1802.04764]* [arXiv:180?.????]** * In collaboration with Chris Kouvaris. ** In collaboration with Rouven Essig, Chris Kouvaris, and Mukul Sholapurkar. 24.04.2018 C.N. Yang Institute for Theoretical Physics
10 - 22 CMB 10 - 27 XQC • Pre-detector Earth CRESST 2017 surface 10 - 32 scatterings affect DAMIC ( 2011 ) the expected CRESST III C R E S S T I 10 - 37 I signal. 10 - 42 1.Diurnal modulations XENON1T d n o u k g r a c b n o u t r i e n 10 - 47 2.Loss of sensitivity 0.1 0.5 1 5 10 Hasenbalg et al, Phys.Rev. D55 (1997) 7350-7355 Starkman et al, Phys.Rev. D41 (1990) 3594 TE, C. Kouvaris, [arXiv:1802:04764]
O U T L I N E I. Terrestrial DM-nucleus scatterings II. Monte Carlo simulation of DM trajectories III. Implications for direct detection • Diurnal modulations • Earth shielding IV. DM-electron scattering experiments
Part I T E R R E S T R I A L D M - N U C L E U S S C AT T E R I N G S
R E L E VA N C E O F E A R T H S C AT T E R I N G S • unobservable underground DM-nucleus scatterings occur frequently for O (pb) cross sections. • these change the DM phase space inside the Earth • Look e.g. at models with a heavy dark photon portal µ + ε F µ ν F 0 µ ν + m 2 X γ µ XA 0 µ A 0 µ L ⊃ g X ¯ φ A 0 ◆ 2 ✓ µ χ p σ χ p ' σ χ e µ χ e • Here tested DM-electron cross sections are accompanied by strong DM-nucleus interactions. S.K. Lee et al, PRD92 (2015) 083517 TE, C. Kouvaris, I. Shoemaker, PRD96 (2017) no.1, 015018
D A R K M AT T E R S C AT T E R I N G I N S I D E T H E E A R T H Probability to scatter after travelling a distance L: • d x � Z P ( L ) = 1 − exp − � MFP ( ~ v ) x, ~ The mean free path is given by • x ) ⇢ ⊕ ( ~ x ) X � − 1 � total MFP ( ~ v ) = f A i ( ~ χ A i ( ~ v ) x, ~ m A i i • Underground DM-nucleus scatterings have two consequences: A. re-distribution of DM particles inside the Earth B. deceleration of the DM particles • If DM-nucleus interactions are sufficiently strong, these two effects could influence the outcome of a DM detection experiment severely.
Part II M O N T E C A R L O S I M U L AT I O N S O F D A R K M AT T E R T R A J E C T O R I E S
M C S I M U L AT I O N S •Isodetection angle ~ v ⊕ ( t ) · ~ x lab ( t ) � Θ ( t ) = arccos v ⊕ ( t )( r ⊕ − d lab ) J.I. Collar, F.T. Avignone, Phys. Lett. B275 (1992), 181-185 J.I. Collar, F.T. Avignone, PRD 47 (1993), 5238-5246 Hasenbalg et al., PRD 55 (1997), 7350-7355
E A R T H S H A D O W B.J. Kavanagh, R. Catena, C. Kouvaris, JCAP 1701 (2017) no 01, 012 An analytic treatment of single Earth scatterings. • Limited to scattering probabilities of ≤ 10%. • The EarthShadow code is public: https://github.com/bradkav/EarthShadow
M C S I M U L AT I O N V S E A R T H S H A D O W A C R U C I A L C O N S I S T E N C Y C H E C K
R E S U LT S : D M S P E E D D I S T R I B U T I O N S 0 0 30 30 60 60 90 90 120 120 150 150 180 180 0 0 30 30 60 60 90 90 120 120 150 150 180 180 TE,C. Kouvaris, JCAP 1710 (2017) no.10, 031
Part III I M P L I C AT I O N S F O R D I R E C T D E T E C T I O N
E V E N T R AT E A C R O S S T H E G L O B E
D I U R N A L M O D U L AT I O N
D I U R N A L M O D U L AT I O N • We can predict the local diurnal modulation for every laboratory. • Both amplitude and phase. • Different experiments could be cross- δ ( Φ lab ) = 100 R max − R min correlated. R max
D I U R N A L M O D U L AT I O N
Part III.b W H E N T E R R E S T R I A L D E T E C T O R S L O S E S E N S I T I V I T Y Atmosphere Earth crust Lead shielding Detector
D A R K M AT T E R S T O P P I N G P O W E R W I T H O U T M C • DM traversing through matter lose energy: E max R d h E i d σ i Z X = � n i ( x ) d E R E R d x d E R i 0 • Method A: Find cross section, for which the overburden makes even the fastest particles undetectable. • Method B: Compute the change of the DM spectrum ∞ d R d v vf ( v ) d σ i Z = n DM n T d E R d E R v min ( E R ) J.H. Davis, Phys.Rev.Lett. 119 (2017) no.21, 211302 B.J. Kavanagh, [arXiv:1712.04901]
D M S H I E L D I N G B Y T H E E A R T H C R U S T 10 14 10 11 1 10 8 0.5 10 5 10 2 0.1 10 - 1 10 - 46 10 - 44 10 - 42 10 - 40 10 - 38 10 - 36 10 - 34 10 - 32 10 - 30 M.S. Mahdawi, G.R. Farrar, JCAP 1712 (2017) 004 TE,C. Kouvaris, [arXiv:1802:04764]
D M - N U C L E U S C O N S T R A I N T S 10 - 22 CMB 10 - 27 XQC CRESST 2017 surface 10 - 32 DAMIC ( 2011 ) CRESST III C R E S S T I 10 - 37 I 10 - 42 XENON1T n d o u g r c k b a o r i n e u t n 10 - 47 0.1 0.5 1 5 10
Part IV D M - E L E C T R O N S C AT T E R I N G E X P E R I M E N T S
D M - E L E C T R O N E X P E R I M E N T S ����� ������� 0 Models with heavy dark photon • � χ = � ��� portal and kinetic mixing: � - ��������� [ ����� ] - 500 ◆ 2 ✓ µ χ p σ χ p ' - 1000 µ χ e σ χ e �������� ����� - 1500 0 2000 4000 6000 8000 10000 12000 Testable DM-electron cross • # �� ����������� sections are connected to very 10 - 26 �� - �������� ����� �������� σ �� - � [ �� � ] strong, but unobservable DM- ����� �������� nucleus interactions. 10 - 29 ����� ����� In the most extreme case these • 107 g - d,11 e - 10 - 32 could “blind" a detector. 10 - 35 10 - 38 S.K. Lee et al, PRD92 (2015) 083517 100 g - yr, 2 e - ( proj. ) 10 - 41 TE, C. Kouvaris, I. Shoemaker, PRD96 (2017) no.1, 015018 1 5 10 50 100 5001000 � �� [ ��� ]
D M E L E C T R O N E X P E R I M E N T S What’s new? Implement the full computation of event rates for liquid noble gas • experiments and semiconductor targets (ionization and crystal form factors). R. Essig et al., JHEP 1605 (2016) 046 R. Essig et al., Phys.Rev. D96 (2017) no.4, 043017 DarkSide collaboration, [arXiv:1802:06998] Main focus lies on light mediators • ➡ new q-dependence in the cross section alter the scattering kinematics and stopping power of the overburden ➡ IR divergencies and charge screening for small momentum transfers (relevant for DM masses below ~10 MeV) Use both analytic and MC methods. •
S C AT T E R I N G D Y N A M I C S W I T H L I G H T M E D I AT O R S 1.4 1.4 1.4 F DM ~ 1 F DM ~ 1 F DM = 1 q q 2 1.2 1.2 1.2 1.0 1.0 1.0 f N ( cos α ) f N ( cos α ) f N ( cos α ) 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 - 1.0 - 0.5 0.0 0.5 1.0 - 1.0 - 0.5 0.0 0.5 1.0 - 1.0 - 0.5 0.0 0.5 1.0 cos α cos α cos α m DM = 1 MeV m DM = 10 MeV m DM = 100 MeV m DM = 1000 MeV v = 50 km v = 300 km v = v esc + v ⊕ sec sec D M F O R M FA C T O R V S C H A R G E S C R E E N I N G 8 1 , for heavy mediator , > a 2 q 2 > < q ref for ED interaction , q , F DM ( q ) = F A ( q ) = ⌘ 2 1 + a 2 q 2 ⇣ > q ref for light mediator . > , : q
P R E L I M I N A RY R E S U LT S 10 - 24 10 - 23 10 - 22 10 - 24 10 - 25 10 - 23 10 - 25 10 - 24 10 - 26 10 - 26 10 - 25 10 - 27 10 - 27 Y 10 - 26 R Y 10 - 28 A 10 - 28 R 10 - 27 N A 10 - 29 10 - 29 I M N 10 - 28 I σ e [ cm 2 ] I 10 - 30 M σ e [ cm 2 ] σ e [ cm 2 ] L 10 - 30 10 - 29 E I L 10 - 31 R E P 10 - 30 10 - 31 R 10 - 32 P 10 - 31 10 - 32 10 - 33 10 - 32 10 - 34 10 - 33 10 - 33 10 - 35 10 - 34 10 - 34 10 - 36 10 - 35 10 - 35 10 - 37 F DM =( α m e / q ) 2 F DM = 1 10 - 36 10 - 36 10 - 38 F DM = α m e / q 10 - 37 10 - 39 10 - 37 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 0 10 1 10 2 10 3 10 4 m χ [ MeV ] m χ [ MeV ] m χ [ MeV ] XENON10 XENON100 SENSEI DarkSide - 50 SuperCDMS ( 2018 ) To Do Further experiments: DarkSide-50 & SuperCDMS Projections for e.g. high-altitude experiments. better understanding on electronic stopping power
D A M A S C U S D a r k M a t t e r S i m u l a t i o n C o d e f o r U n d e rg ro u n d S c a t t e r i n g s The code is public: http://github.com/temken/
Thank you!
B A C K U P : M O D E L L I N G T H E E A R T H Density Profile: Preliminary • Reference Earth Model (PREM) A.M. Dziewonski et al, Physics of the Earth and Planetary Interiors 25 (1981) 297-356 Composition: Two compositional • layers (core & mantle) W. McDonough, Treatise on Geochemistry, vol. 3, 559-577. Elsevier, 2014 [1312.1202] Element Core[%] Mantle[%] Element Core[%] Mantle[%] 56 Fe 32 S 85.5 6.26 1.9 0.03 16 O 52 Cr 0 44 0.9 0.26 28 Si 23 Na 6 21 0 0.27 24 Mg 31 P 0 22.8 0.2 0.009 58 Ni 55 Mn 5.2 0.2 0.3 0.1 40 Ca 12 C 0 2.53 0.2 0.01 27 Al 1 H 0 2.35 0.06 0.01 Total 100.26 99.83
B A C K U P : I N I T I A L C O N D I T I O N S • Initial velocity: v 2 ✓ ◆ 1 − ~ f halo ( ~ v ) = exp Θ ( v esc − | ~ v | ) v 2 N esc 0 v ini = ~ v ⊕ ( t ) ~ v halo − ~ • Initial position: p r ini = R ~ e z + ⇠ r ⊕ (cos � ~ e x + sin � ~ e y ) ~
Recommend
More recommend