soliton decomposition of the box ball system
play

Soliton decomposition of the Box-Ball System Leonardo T. Rolla with - PowerPoint PPT Presentation

Soliton decomposition of the Box-Ball System Leonardo T. Rolla with Pablo A. Ferrari, Chi Nguyen, Minmin Wang Resources Simulation https://mate.dm.uba.ar/leorolla/simulations/bbs.html (on a 1d torus wrapped around a 2d torus) These slides


  1. Soliton decomposition of the Box-Ball System Leonardo T. Rolla with Pablo A. Ferrari, Chi Nguyen, Minmin Wang

  2. Resources Simulation https://mate.dm.uba.ar/˜leorolla/simulations/bbs.html (on a 1d torus wrapped around a 2d torus) These slides http://mate.dm.uba.ar/˜leorolla/bbs-slides.pdf Article https://arxiv.org/abs/1806.02798 (and references therein) Extended abstract http://mate.dm.uba.ar/˜leorolla/bbs-abstract.pdf

  3. Ball-Box System (Takahashi-Satsuma 1990) Ball configuration η ∈ { 0 , 1 } Z η ( x ) = 0 ↔ empty box, η ( x ) = 1 ↔ ball at x Carrier picks balls from occupied boxes Carrier deposits one ball, if carried, at empty boxes 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 η 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 Tη T 2 η 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 Tη : configuration after the carrier visited all boxes.

  4. Formal definition We say that x is an excursion point if, for some z � y , x x � � η ( y ) � [ 1 − η ( y ) ] , y = z y = z otherwise x is a record . Now we define � 0 , x is a record , Tη ( x ) = 1 − η ( x ) , otherwise.

  5. Example

  6. Motivation: Korteweg & de Vries equation u = u ′′′ + u u ′ ˙ Soliton : a solitary wave that propagates with little loss of energy and retains its shape and speed after colliding with another such wave

  7. Take-home messages Ergodic Theory ↔ Integrable System ↔ Algebraic Structures? Identifying solitons and hierarchical structures Interaction ❀ asymptotic speeds Many conservations ❀ many invariant measures Complete description of invariant measures still missing Uniqueness of solutions to speed equations still missing

  8. Solitons in the BBS

  9. Outline of the talk 1) Conservation of k -solitons and how to identify them (T&S) 2) Asymptotic speed of k -solitons 3) k -slots and k -components 4) Invariant measures for T from independent k -components 5) Evolution of k -components is a hierarchical translation 6) Reconstruction from k -components

  10. Solitons

  11. Conservation of solitons k -soliton: set of k successive ones followed by k zeros (for now) Isolated k -solitons travel at speed k and conserve shape and distance: 000001110000000000000000001110000000000000 000000001110000000000000000001110000000000 000000000001110000000000000000001110000000 000000000000001110000000000000000001110000 000000000000000001110000000000000000001110 000000000000000000001110000000000000000001 000000000000000000000001110000000000000000 000000000000000000000000001110000000000000 000000000000000000000000000001110000000000 000000000000000000000000000000001110000000 000000000000000000000000000000000001110000 000000000000000000000000000000000000001110

  12. Conservation of solitons k -solitons and distances are conserved after interacting with m -solitons: 000001110000001000000000000111000000000000000000000000 000000001110000100000000000000111000000000000000000000 000000000001110010000000000000000111000000000000000000 000000000000001101100000000000000000111000000000000000 000000000000000010011100000000000000000111000000000000 000000000000000001000011100000000000000000011100000000 000000000000000000100000011100000000000000000011100000 000000000000000000010000000011100000000000000000011100 000000000000000000001000000000011100000000000000000011 000000000000000000000100000000000011100000000000000000 000000000000000000000010000000000000011100000000000000

  13. Conservation of solitons Isolated k -solitons travel at speed k and conserve the distances: .....111000...............111000.......... ........111000...............111000....... ...........111000...............111000.... ..............111000...............111000. k -solitons and distances are conserved after interacting with m -solitons: .....111000...10............111000................... ........111000.10..............111000................ ...........11100100...............111000............. ..............11011000..............111000........... ................10.111000..............111000........ .................10...111000..............111000..... ..................10.....111000..............111000..

Recommend


More recommend