synchronous grammars synchronous grammars
play

Synchronous Grammars Synchronous grammars are a way of - PowerPoint PPT Presentation

Synchronous Grammars Synchronous grammars are a way of simultaneously generating pairs of recursively related strings Synchronous grammar w w Synchronous grammars were originally invented for programming language compilation


  1. Synchronous Grammars

  2. Synchronous grammars are a way of simultaneously generating pairs of recursively related strings Synchronous grammar w w ʹ

  3. Synchronous grammars were originally invented for programming language compilation Synchronous grammar for i := 1 to 10 do mov ax, 1 begin loop: add bx, ax n := n + i cmp ax, 10 end jle loop

  4. Synchronous grammars have been proposed as a way of doing semantic interpretation Synchronous grammar open ′ (me ′ , box ′ ) I open the box

  5. Synchronous grammars have been used for syntax-based machine translation Synchronous grammar I open the box watashi wa hako wo akemasu

  6. Synchronous grammars can do much fancier transformations than finite-state methods The boy stated that the student said that the teacher danced shoonen ga gakusei ga sensei ga odotta to itta to hanashita boy student teacher danced that said that stated

  7. Synchronous grammars can do much fancier transformations than finite-state methods …that John saw Peter help the children swim …dat Jan Piet de kinderen zag helpen zwemmen John Peter the children saw help swim

  8. Overview Definitions Properties Algorithms Extensions

  9. Definitions

  10. Context-free grammars S → NP VP S NP → I NP VP NP → the box I NP V VP → V NP open the box V → open

  11. Context-free grammars S → NP VP S NP → watashi wa NP VP NP → hako wo watashi wa NP V VP → NP V V → akemasu hako wo akemasu

  12. Synchronous CFGs S → NP 1 VP 2 S → NP 1 VP 2 NP → I NP → watashi wa NP → the box NP → hako wo VP → V 1 NP 2 VP → NP 2 V 1 V → open V → akemasu

  13. Synchronous CFGs S → NP 1 VP 2 , NP 1 VP 2 S → NP 1 VP 2 , NP 1 VP 2 NP → I, watashi wa NP → I, watashi wa NP → the box, hako wo NP → the box, hako wo VP → V 1 NP 2, NP 2 V 1 VP → V 1 NP 2, NP 2 V 1 V → open, akemasu V → open, akemasu

  14. Synchronous CFGs S 1 S 1 S 1 S 1 NP 2 NP 2 VP 3 VP 3 NP 2 NP 2 VP 3 VP 3 I NP 5 NP 5 watashi wa NP 5 V 4 V 4 V 4 V 4 NP 5 open the box hako wo akemasu

  15. Adding probabilities 0.3 S → NP 1 VP 2 , NP 1 VP 2 0.1 NP → I, watashi wa 0.6 NP → the box, hako wo 0.5 VP → V 1 NP 2, NP 2 V 1 0.2 V → open, akemasu

  16. Synchronous CFGs S 1 S 1 S 1 S 1 NP 2 NP 2 VP 3 VP 3 NP 2 NP 2 VP 3 VP 3 I NP 5 NP 5 watashi wa NP 5 V 4 V 4 V 4 V 4 NP 5 open the box hako wo akemasu Derivation probability: 0.3 × 0.1 × 0.5 × 0.6 × 0.2

  17. Other notations Syntax directed translation VP → (V 1 NP 2 , NP 2 V 1 ) schema (Aho and Ullman; Lewis and Stearns) (VP → V 1 NP 2 , VP → NP 2 V 1 ) Inversion transduction VP → 〈 V NP 〉 grammar (Wu) [1,2] ( V NP ) VP → ⋈ Multitext grammar (Melamed) [2,1] V NP

  18. Properties

  19. Chomsky normal form X → Y Z X → a

  20. Chomsky normal form A → (((B C) D) E) F rank 5

  21. Chomsky normal form A → [[[B C] D] E] F rank 5 A → V1 F V1 → V2 E rank 2 V2 → V3 D V3 → B C

  22. A hierarchy of synchronous CFGs 1-CFG ⊊ 2-CFG = 3-CFG = 4-CFG = … 1-SCFG ⊊ 2-SCFG = 3-SCFG ⊊ 4-SCFG ⊊ … = = ITG (Wu, 1997)

  23. Synchronous CNF? A → (B 1 [C 2 D 3 ], [C 2 D 3 ] B 1 ) rank 3

  24. Synchronous CNF? A → (B 1 [C 2 D 3 ], [C 2 D 3 ] B 1 ) rank 3 A → ( B 1 V1 2 , V1 2 B 1 ) rank 2 V1 → ( C 1 D 2 , C 1 D 2 )

  25. Synchronous CNF? A → (B 1 C 2 D 3 E 4 , C 2 E 4 B 1 D 3 ) rank 4 A → ([B 1 C 2 ] D 3 E 4 , [C 2 E 4 B 1 ] D 3 ) A → (B 1 [C 2 D 3 ] E 4 , [C 2 E 4 B 1 D 3 ]) A → (B 1 C 2 [D 3 E 4 ], C 2 [E 4 B 1 D 3 ])

  26. Synchronous CNF? 1 2 3 B 1 A → (B 1 C 2 D 3 , C 2 D 3 B 1 ) C 2 D 3 1 2 3 4 B 1 C 2 A → (B 1 C 2 D 3 E 4 , C 2 E 4 B 1 D 3 ) D 3 E 4

  27. A hierarchy of synchronous CFGs 1-CFG ⊊ 2-CFG = 3-CFG = 4-CFG = … 1-SCFG ⊊ 2-SCFG = 3-SCFG ⊊ 4-SCFG ⊊ … = = ITG (Wu, 1997)

  28. Algorithms

  29. Overview Translation Bitext parsing

  30. Review: CKY S → NP VP NP → I NP NP → the box VP → V NP V V → open I I open the box open

  31. Review: CKY S → NP VP NP → I NP NP → the box VP → V NP NP V V → open I I open the box open the box

  32. Review: CKY S → NP VP NP → I NP VP NP → the box VP → V NP NP NP V V V → open I open the box

  33. Review: CKY S S → NP VP NP → I NP NP VP VP NP → the box VP → V NP V → open I open the box

  34. Review: CKY S S → NP VP NP → I NP → the box VP → V NP V → open I open the box

  35. Review: CKY VP 4 NP 3 NP 3 V 2 V 2 open the box O ( n 3 ) ways of matching

  36. Translation S NP 1 VP 2 I NP 4 V 3 open the box O ( n 3 ) I open the box

  37. Translation S S S O ( n ) NP 1 VP 2 NP 1 NP 1 VP 2 VP 2 I NP 4 watashi wa NP 4 NP 4 V 3 V 3 V 3 open the box hako wo akemasu O ( n 3 ) O ( n ) I open the box watashi wa hako wo akemasu

  38. Translation What about… A B C D E O ( n 5 ) ways of combining?

  39. Translation A A B C D E V1 translate flatten V2 A O ( n ) O ( n ) B C D E C E D B parse O ( n 3 )

  40. Bitext parsing S S NP 1 VP 2 NP 1 VP 2 I NP 4 watashi wa NP 4 V 3 V 3 open the box hako wo akemasu O ( n ? ) I open the box watashi wa hako wo akemasu

  41. Bitext parsing NP 1 NP 1 NP 4 NP 4 V 3 V 3 I I open open the box the box watashi wa watashi wa hako wo hako wo akemasu akemasu Consider rank-2 synchronous CFGs for now

  42. Bitext parsing NP 1 VP 2 NP 1 VP 2 NP 4 NP 4 NP 4 NP 4 V 3 V 3 V 3 V 3 I open the box watashi wa hako wo akemasu

  43. Bitext parsing S S NP 1 NP 1 VP 2 VP 2 NP 1 NP 1 VP 2 VP 2 I open the box watashi wa hako wo akemasu

  44. Bitext parsing S S I open the box watashi wa hako wo akemasu

  45. Bitext parsing VP 2 VP 2 NP 4 NP 4 NP 4 NP 4 V 3 V 3 V 3 V 3 open the box hako wo akemasu O ( n 6 ) ways of matching

  46. Bitext parsing A A B 1 C 2 D 3 E 4 C 2 E 4 B 1 D 3 O ( n 10 ) ways of combining!

  47. Algorithms Translation: easy Bitext parsing: polynomial in n but worst-case exponential in rank

  48. Algorithms Translation with an n -gram language model Offline rescoring Intersect grammar and LM (Wu 1996; Huang et al. 2005): slower Hybrid approaches (Chiang 2005; Zollman and Venugopal 2006)

  49. Extensions

  50. Limitations of synchronous CFGs S S NP VP NP VP John V NP Marie V PP misses Mary manque P NP à Jean

  51. One solution S 1 S 1 NP 2 misses NP 3 manque à NP 3 NP 2 John Marie Mary Jean

  52. Synchronous tree substitution grammars S S NP NP NP 1 VP NP 2 VP John Jean V NP 2 V PP NP NP misses manque P NP 1 Mary Marie à

  53. Synchronous tree substitution grammars S S NP NP VP NP NP VP 1 2 John V NP NP Marie V PP 2 misses manque P NP Mary NP 1 à Jean

  54. Limitations of synchronous TSGs …dat Jan Piet de kinderen zag helpen zwemmen …that John saw Peter help the children swim This pattern extends to n nouns and n verbs

  55. Limitations of synchronous TSGs S S NP NP VP NP NP VP 1 1 John V S Jan V S 2 2 ? saw zag ? Piet de kinderen helpen zwemmen Peter help the children swim

  56. Tree-adjoining grammar S S S V S V NP VP zwemmen NP VP helpen de kinderen V Piet S* V t t

  57. S S V S V zwemmen S S V NP VP helpen NP VP zwemmen S de kinderen V Piet S V S V t NP VP helpen t Piet S* V NP VP t de kinderen V t

  58. Synchronous TAG S S 1 V S 1 zwemmen NP 2 VP 3 NP 2 VP 3 the children V de kinderen V swim t

  59. S S 1 V S 1 zwemmen NP 2 VP 3 NP 2 VP 3 the children V de kinderen V swim t S V S 1 S 1 helpen NP 2 VP 3 NP 2 VP 3 Piet S* V Peter V S* t help

  60. S S V V S 1 zwemmen S 1 helpen NP 2 VP 3 NP 2 VP 3 Piet S S V Peter V t VP 5 help NP 4 VP 5 NP 4 the children V de kinderen V t swim

  61. S S 1 NP 2 VP 3 S V S Peter V V S 1 zwemmen help NP 4 VP 5 helpen NP 2 VP 3 the children V Piet S V swim t VP 5 NP 4 S S 1 de kinderen V V S 1 NP 2 VP 3 t zag NP 2 VP 3 John V S* Jan S* V saw t

  62. S S S 1 V S V zwemmen NP 2 VP 3 helpen John V S S 1 V zag saw NP 2 VP 3 NP 4 VP 5 S Jan Peter V S V help NP 6 VP 7 t NP 4 VP 5 the children V Piet S V swim t VP 7 NP 6 de kinderen V t

  63. Summary Synchronous grammars are useful for various tasks including translation Some rules “in the wild” (Chiang, 2005): X → (de, ’s) X → (X 1 de X 2, the X 2 of X 1) X → (X 1 de X 2, the X 2 that) X → (zai X 1 xia, under X 1 ) X → (zai X 1 qian, before X 1 ) X → (X 1 zhiyi, one of X 1 )

  64. Summary Synchronous context-free grammars vary in power depending on rank Translation is easy; bitext parsing is exponential in rank

  65. Summary Beyond synchronous CFGs, synchronous TSGs allow multilevel rules synchronous TAGs allow discontinuous constituents

Recommend


More recommend