Organic Redox-Flow-Batteries Sustainable, Safe and Scalable Stationary Energy Storage Dr. Olaf Conrad, Managing Director 25.10.2017 1
About JenaBatteries GmbH (JB) Founded in 2012 , JB holds the global patent for Polymer-based-Redox-Flow-Batteries and filed further patents in the field of organic radical redox flow batteries. 2015 we won the IQ Innovationspreis 2015 (Mitteldeutschland). 2016 , JB attracted two new investors with comprehensive expertise in R&D, engineering and business development. JenaBatteries is growing rapidly (5 employees in August 2016 to currently 16 employees) JenaBatteries ist focused on developing and producing stationary energy storage systems (with a capacity above 40 kWh). Currently delivering pilot installations in Germany and The Netherlands Actively building a global network of project development and technical support partners based on a collaborative licensing business model JB is supported by: Homepage: www.jenabatteries.com 25.10.2017 2
JenaBatteries – Cost effective organic based redox flow batteries Metal-free energy storage system based on patented organic, redox-active energy storage materials Water based, near-neutral pH No toxic heavy metals, no critical raw materials Inexpensive raw materials and membranes > 10.000 cycles 10 kW to 2 MW and 40 kWh to 10 MWh Targeted installation cost < 500 €/kWh 25.10.2017 3
Management Team & Owners Management Team: Dr. Olaf Conrad Managing Director Dr. Norbert Martin Tobias Janoschka Michael-Lothar Schmidt Carsten Oder Electrolyte & Material Corporate Development BD & Marketing System & Electronics Owners: Wirthwein AG Ranft Gruppe www.jenabatteries.com 25.10.2017 4
Current material basis & challenges Rare Plus Cobalt earth Vanadium Lead NiCd… (Lithium) elements (RFB) (Ni-MeH) No sustainable raw material basis Important battery issues: • Safety • Sustainability • Scalability • Cycle Stability … • 25.10.2017 5
Organic Active Materials and their Redox Potentials TEMPO Viologen H 2 evolution Water stability O 2 evolution 0.0 V Water based flow batteries desireable due to higher safety, higher conductivity and price despite lower cell voltage TEMPO / Viologen systems utilize a large portion of the potential available in water J. Winsberg et al. Angew. Chem. Int. Ed. , 2017 , 56 , 686-711 25.10.2017 6
Conductive polymers & batteries poly(acetylene) poly(aniline) poly(pyrrole) H N H H N N n n n Discovered 1977, Nobel price in Chemistry 2000 (“for the discovery and development of conductive polymers“) Commercial button cells flopped Bridgestone-Seiko VARTA/BASF poly(aniline)/lithium poly(pyrrole)/lithium (1987-1992) (1987) 7 J. S. Miller, Adv. Mater. 1993 , 5 , 671-676; D. Naegele, R. Bittihn, Solid State Ionics 1988 , 28-30 , 983-989. 25.10.2017 7
Polymer-based energy storage? conductive redox polymers polymers Cell voltage / a.u. H N O O O O O O N N H H N N N O O O Conductive polymer battery Desired discharging behavior Capacity / % polymers with distinct redox sloping redox potential (redox potential attributed to localized potential gradually changes upon redox sites charging/discharging) stable cell voltage useless for numerous applications Adv. Mater. 2012 , 24 , 6397–6409. 8 25.10.2017 8
Bi-Polar Polymers - Poly(BODIPY) – Organic Solvents J. Winsberg. et al. Chem. Mater. , 2016 , 28 (10), pp 3401–3405 25.10.2017 9
Polymer design for aqueous systems TEMPO- and viologen-polymers for water-based redox-flow batteries + + A A A + A + m n m n R= a -O(CH @ 450 g mol -1 2 CH 2 O) n CH 3 H 2 O 2 R= b -O(CH @ 950 g mol -1 O R O O O O Na 2 WO 4 + O R 2 CH 2 O) n CH 3 O O R= c -O(CH 2 CH 2 O) 2 CH 3 R= d -NH O R 2 R= e -O(CH + Cl - 2 ) 2 N(CH 3 ) 3 N N N H H O 25.10.2017 10
Design criteria for TEMPO and Viologen Polymers n m O O O X Polar group N O Energy Storage Solubilizing Monomer (EM) Monomer (SM) n m P1 P2 Polar group Intensity / a.u. N Cl Energy Storage N Monomer (EM) 0.1 1 10 100 Cl <R h > n,app / nm T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M. D. Hager, U. S. Schubert, Nature 2015 , 527 , 78-81. 25.10.2017 11
Co-Polymer for TEMPO and Viologen Polymers n m n m 1. HCl/H 2 O 2. ABCVA/HSC 2 H 4 OH O O O O O O O O O O O O 3. NaOH/H 2 O Na 2 WO 4 /H 2 O 2 + Cl N Cl Cl N N N N N H H O 1 2 P1 N n m n m DMSO N I AIBN + ion exchange N N Cl N Cl Cl N Cl Cl Cl 4 3 P2 N Cl T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M. D. Hager, U. S. Schubert, Nature 2015 , 527 , 78-81. 25.10.2017 12
Rheological Data and Charge / Discharge Behavior in Flow Cells 1.5 P1 P2 1.2 -1 Viscosity / Pa s 10 Cell voltage / V 0.9 R R - - e 0.6 P1: - + e N N -2 O O 10 TEMPO + TEMPO 0.3 - + e P2: R N N R R N N R - - e Viol +· Viol ++ 0.0 -2 -1 0 1 2 3 0 5,000 10,000 15,000 10 10 10 10 10 10 Time / s -1 Shear rate / s Viscosity in flow range (shear rate > 1 s -1 between 5 and 20 mPas Stable redox cycling in water based solutions confirmed T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M. D. Hager, U. S. Schubert, Nature 2015 , 527 , 78-81. 25.10.2017 13
“Small molecules”-based RFB aqueous active material electrolyte catholyte tank anolyte tank R R N Cl N Cl N O R ion-selective electrode membrane low viscosity and good more expensive ion-selective solubility will lead to higher membrane capacity, ion mobility, current simplified synthetic access allows density for lower-cost electrolyte 25.10.2017 14
Cathode • commercially available R OH • low-cost R OH • low retention by membrane • expensive • anionic species R COOH R • low retention by membrane N • O • expensive • low solubility of TEMPOL of only 0.5 mol/L in 1.5 R NH 2 • low retention by mol/L NaCl aq → 13 Ah/L membrane • high solublity of MV, but only 0.5 mol/L demonstrated • not commercially • high amount of supporting electrolyte (1.5 available mol/L NaCl aq ) R N R N • high retention by membrane T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, Adv. Energ. Mat. 2015 , DOI: 10.1002/aenm.201501449. 25.10.2017 15
Improved synthesis route N O Me 2 NH (gas), N N Pd/C, Cl Cl H 2, CH 3 Cl H 2 O 2 /MgSO 4 MeOH MeCN/toluene N N H N N H H • O up-scaling to kg-scale by … … substitution of dimethylammonium hydrochloride (difficult purification procedure) with dimethylamine gas … substitution of expensive, B-based reduction agent with hydrogen … direct methylation with chloromethane and substitution of CH 3 I … low-cost oxidation catalyst … simple purification procedures T. Janoschka, N. Martin, M. D. Hager, U. S. Schubert , Angew. Chem. Int. Ed . 2016 Nov 7;55(46):14427-14430 25.10.2017 16
High cyclability of the storage material 500 100 Coulombic efficiency / % 400 98 100 Capacity / mAh 80 R R Residual Capacity [%] 300 96 - -e 60 - +e 200 94 40 N N O 20 O 100 92 0 0 2000 4000 6000 8000 10000 Zyklus 0 90 0 20 40 60 80 100 Cycle number Facile one-electron transfer reactions without ion insertion/intercalation on charge and discharge no mechanical stress, no volume change high cycle stability Molecular structure unchanged during charging/discharging no degradation from conformational changes Excellent cross-over characteristics due to size and charge of storage material T. Janoschka et al. Angew. Chem., Int. Ed . 2016, 55 , 14427 − 14430 25.10.2017 17
Practical energy density > 20 Wh/l 1,40 Supporting electrolyte [wt-%] 17 1,35 Resting Voltage [V] Leerlaufspannung [V] 1,30 10 1,25 1,20 1,15 0 0 50 90 1,10 Organic storage material [wt-%] 0 20 40 60 80 100 State of Charge [%] Ladezustand [%] Resting voltage at SOC = 50% is 1.25 V, compare to NiMH-battery 1.2 V Solubility of organic storage material is > 50 wt-% Optimization with NaCl concentration – viscosity <-> conductivity <-> energy density Design point for product at 20 Wh/l, lab scale demonstration of up to 35 Wh/l T. Janoschka et al. Angew. Chem., Int. Ed . 2016, 55 , 14427 − 14430 25.10.2017 18
Rheological behaviour allows for wide operating window Viscosity is impacting the pumping losses low viscosity results in low pumping losses Viscosity at design point (20 Wh/l) is 3 mPas (anolyte) and 6 mPas (catholyte) at 25 °C, respectively Compare water: 1 mPas, grape juice 2 .. 5 mPas, syrup approx. 10.000 mPas At 5 °C viscosity remains suitably low at 5 mPas (anolyte) and 12 mPas (catholyte), respectively 25.10.2017 19 19
Stack efficiency > 85% at rated stack power of 5 kW Ladegrad (SoC): 10 … 90 % Leistung Entladen (kW) Leistung Laden (kW) Results from laboratory installation 16.0 10 14.0 8 Widerstand [Ohm*cm²] Verlustanteil (%) 12.0 6 10.0 4 8.0 6.0 2 4.0 0 0 10 20 30 40 50 60 2.0 Temperatur [°C] 0.0 0 2 4 6 8 10 12 14 Leistung Stack (kW) Stack design allows high efficiency at rated power with ability to deliver 2x peak power Operation at higher temperatures improves stack efficiency and overall system efficiency Elevated temperature reduces ohmic stack losses and pumping losses 25.10.2017 20
Recommend
More recommend