sustainable safe and scalable stationary energy storage
play

Sustainable, Safe and Scalable Stationary Energy Storage Dr. Olaf - PowerPoint PPT Presentation

Organic Redox-Flow-Batteries Sustainable, Safe and Scalable Stationary Energy Storage Dr. Olaf Conrad, Managing Director 25.10.2017 1 About JenaBatteries GmbH (JB) Founded in 2012 , JB holds the global patent for


  1. Organic Redox-Flow-Batteries Sustainable, Safe and Scalable Stationary Energy Storage Dr. Olaf Conrad, Managing Director 25.10.2017 1

  2. About JenaBatteries GmbH (JB) Founded in 2012 , JB holds the global patent for Polymer-based-Redox-Flow-Batteries and filed further patents in the field of organic radical redox flow batteries. 2015 we won the IQ Innovationspreis 2015 (Mitteldeutschland). 2016 , JB attracted two new investors with comprehensive expertise in R&D, engineering and business development. JenaBatteries is growing rapidly (5 employees in August 2016 to currently 16 employees) JenaBatteries ist focused on developing and producing stationary energy storage systems (with a capacity above 40 kWh). Currently delivering pilot installations in Germany and The Netherlands Actively building a global network of project development and technical support partners based on a collaborative licensing business model JB is supported by: Homepage: www.jenabatteries.com 25.10.2017 2

  3. JenaBatteries – Cost effective organic based redox flow batteries  Metal-free energy storage system based on patented organic, redox-active energy storage materials  Water based, near-neutral pH  No toxic heavy metals, no critical raw materials  Inexpensive raw materials and membranes  > 10.000 cycles  10 kW to 2 MW and 40 kWh to 10 MWh  Targeted installation cost < 500 €/kWh 25.10.2017 3

  4. Management Team & Owners Management Team: Dr. Olaf Conrad Managing Director Dr. Norbert Martin Tobias Janoschka Michael-Lothar Schmidt Carsten Oder Electrolyte & Material Corporate Development BD & Marketing System & Electronics Owners: Wirthwein AG Ranft Gruppe www.jenabatteries.com 25.10.2017 4

  5. Current material basis & challenges Rare Plus Cobalt earth Vanadium Lead NiCd… (Lithium) elements (RFB) (Ni-MeH) No sustainable raw material basis Important battery issues: • Safety • Sustainability • Scalability • Cycle Stability … • 25.10.2017 5

  6. Organic Active Materials and their Redox Potentials TEMPO Viologen H 2 evolution Water stability O 2 evolution 0.0 V  Water based flow batteries desireable due to higher safety, higher conductivity and price despite lower cell voltage  TEMPO / Viologen systems utilize a large portion of the potential available in water J. Winsberg et al. Angew. Chem. Int. Ed. , 2017 , 56 , 686-711 25.10.2017 6

  7. Conductive polymers & batteries poly(acetylene) poly(aniline) poly(pyrrole) H N H H N N n n n Discovered 1977, Nobel price in Chemistry 2000 (“for the discovery and development of conductive polymers“) Commercial button cells flopped Bridgestone-Seiko VARTA/BASF poly(aniline)/lithium poly(pyrrole)/lithium (1987-1992) (1987) 7 J. S. Miller, Adv. Mater. 1993 , 5 , 671-676; D. Naegele, R. Bittihn, Solid State Ionics 1988 , 28-30 , 983-989. 25.10.2017 7

  8. Polymer-based energy storage? conductive redox polymers polymers Cell voltage / a.u. H N O O O O O O N N H H N N N O O O Conductive polymer battery Desired discharging behavior Capacity / %  polymers with distinct redox sloping redox potential (redox  potential attributed to localized potential gradually changes upon redox sites charging/discharging)  stable cell voltage useless for numerous applications  Adv. Mater. 2012 , 24 , 6397–6409. 8 25.10.2017 8

  9. Bi-Polar Polymers - Poly(BODIPY) – Organic Solvents J. Winsberg. et al. Chem. Mater. , 2016 , 28 (10), pp 3401–3405 25.10.2017 9

  10. Polymer design for aqueous systems TEMPO- and viologen-polymers for water-based redox-flow batteries + + A A A + A + m n m n R= a -O(CH @ 450 g mol -1 2 CH 2 O) n CH 3 H 2 O 2 R= b -O(CH @ 950 g mol -1 O R O O O O Na 2 WO 4 + O R 2 CH 2 O) n CH 3 O O R= c -O(CH 2 CH 2 O) 2 CH 3 R= d -NH O R 2 R= e -O(CH + Cl - 2 ) 2 N(CH 3 ) 3 N N N H H O 25.10.2017 10

  11. Design criteria for TEMPO and Viologen Polymers n m O O O X Polar group N O Energy Storage Solubilizing Monomer (EM) Monomer (SM) n m P1 P2 Polar group Intensity / a.u. N Cl Energy Storage N Monomer (EM) 0.1 1 10 100 Cl <R h > n,app / nm T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M. D. Hager, U. S. Schubert, Nature 2015 , 527 , 78-81. 25.10.2017 11

  12. Co-Polymer for TEMPO and Viologen Polymers n m n m 1. HCl/H 2 O 2. ABCVA/HSC 2 H 4 OH O O O O O O O O O O O O 3. NaOH/H 2 O Na 2 WO 4 /H 2 O 2 + Cl N Cl Cl N N N N N H H O 1 2 P1 N n m n m DMSO N I AIBN + ion exchange N N Cl N Cl Cl N Cl Cl Cl 4 3 P2 N Cl T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M. D. Hager, U. S. Schubert, Nature 2015 , 527 , 78-81. 25.10.2017 12

  13. Rheological Data and Charge / Discharge Behavior in Flow Cells 1.5 P1 P2 1.2 -1 Viscosity / Pa s 10 Cell voltage / V 0.9 R R - - e 0.6 P1: - + e N N -2 O O 10 TEMPO + TEMPO 0.3 - + e P2: R N N R R N N R - - e Viol +· Viol ++ 0.0 -2 -1 0 1 2 3 0 5,000 10,000 15,000 10 10 10 10 10 10 Time / s -1 Shear rate / s  Viscosity in flow range (shear rate > 1 s -1 between 5 and 20 mPas  Stable redox cycling in water based solutions confirmed T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M. D. Hager, U. S. Schubert, Nature 2015 , 527 , 78-81. 25.10.2017 13

  14. “Small molecules”-based RFB aqueous active material electrolyte catholyte tank anolyte tank R R N Cl N Cl N O R ion-selective electrode membrane low viscosity and good more expensive ion-selective   solubility will lead to higher membrane capacity, ion mobility, current simplified synthetic access allows  density for lower-cost electrolyte 25.10.2017 14

  15. Cathode • commercially available R OH • low-cost R OH • low retention by membrane • expensive • anionic species R COOH R • low retention by membrane N • O • expensive • low solubility of TEMPOL of only 0.5 mol/L in 1.5 R NH 2 • low retention by mol/L NaCl aq → 13 Ah/L membrane • high solublity of MV, but only 0.5 mol/L demonstrated • not commercially • high amount of supporting electrolyte (1.5 available mol/L NaCl aq ) R N R N • high retention by membrane T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, Adv. Energ. Mat. 2015 , DOI: 10.1002/aenm.201501449. 25.10.2017 15

  16. Improved synthesis route N O Me 2 NH (gas), N N Pd/C, Cl Cl H 2, CH 3 Cl H 2 O 2 /MgSO 4 MeOH MeCN/toluene N N H N N H H • O up-scaling to kg-scale by …  … substitution of dimethylammonium hydrochloride (difficult purification procedure) with dimethylamine gas … substitution of expensive, B-based reduction agent with hydrogen … direct methylation with chloromethane and substitution of CH 3 I … low-cost oxidation catalyst … simple purification procedures T. Janoschka, N. Martin, M. D. Hager, U. S. Schubert , Angew. Chem. Int. Ed . 2016 Nov 7;55(46):14427-14430 25.10.2017 16

  17. High cyclability of the storage material 500 100 Coulombic efficiency / % 400 98 100 Capacity / mAh 80 R R Residual Capacity [%] 300 96 - -e 60 - +e 200 94 40 N N O 20 O 100 92 0 0 2000 4000 6000 8000 10000 Zyklus 0 90 0 20 40 60 80 100 Cycle number Facile one-electron transfer reactions without ion insertion/intercalation on charge and discharge  no mechanical stress, no volume change  high cycle stability Molecular structure unchanged during charging/discharging  no degradation from conformational changes Excellent cross-over characteristics due to size and charge of storage material T. Janoschka et al. Angew. Chem., Int. Ed . 2016, 55 , 14427 − 14430 25.10.2017 17

  18. Practical energy density > 20 Wh/l 1,40 Supporting electrolyte [wt-%] 17 1,35 Resting Voltage [V] Leerlaufspannung [V] 1,30 10 1,25 1,20 1,15 0 0 50 90 1,10 Organic storage material [wt-%] 0 20 40 60 80 100 State of Charge [%] Ladezustand [%] Resting voltage at SOC = 50% is 1.25 V, compare to NiMH-battery 1.2 V Solubility of organic storage material is > 50 wt-% Optimization with NaCl concentration – viscosity <-> conductivity <-> energy density Design point for product at 20 Wh/l, lab scale demonstration of up to 35 Wh/l T. Janoschka et al. Angew. Chem., Int. Ed . 2016, 55 , 14427 − 14430 25.10.2017 18

  19. Rheological behaviour allows for wide operating window Viscosity is impacting the pumping losses  low viscosity results in low pumping losses Viscosity at design point (20 Wh/l) is 3 mPas (anolyte) and 6 mPas (catholyte) at 25 °C, respectively  Compare water: 1 mPas, grape juice 2 .. 5 mPas, syrup approx. 10.000 mPas At 5 °C viscosity remains suitably low at 5 mPas (anolyte) and 12 mPas (catholyte), respectively 25.10.2017 19 19

  20. Stack efficiency > 85% at rated stack power of 5 kW Ladegrad (SoC): 10 … 90 % Leistung Entladen (kW) Leistung Laden (kW) Results from laboratory installation 16.0 10 14.0 8 Widerstand [Ohm*cm²] Verlustanteil (%) 12.0 6 10.0 4 8.0 6.0 2 4.0 0 0 10 20 30 40 50 60 2.0 Temperatur [°C] 0.0 0 2 4 6 8 10 12 14 Leistung Stack (kW) Stack design allows high efficiency at rated power with ability to deliver 2x peak power Operation at higher temperatures improves stack efficiency and overall system efficiency  Elevated temperature reduces ohmic stack losses and pumping losses 25.10.2017 20

Recommend


More recommend